預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42 定理1 關于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
44 定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45 逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
46 勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47 勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
48 定理 四邊形的內角和等于360°
49 四邊形的外角和等于360°
50 多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
51 推論 任意多邊的外角和等于360°
52 平行四邊形性質定理1 平行四邊形的對角相等
53 平行四邊形性質定理2 平行四邊形的對邊相等
54 推論 夾在兩條平行線間的平行線段相等
55 平行四邊形性質定理3 平行四邊形的對角線互相平分
56 平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
57 平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
58 平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
59 平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
60 矩形性質定理1 矩形的四個角都是直角
61 矩形性質定理2 矩形的對角線相等
62 矩形判定定理1 有三個角是直角的四邊形是矩形
63 矩形判定定理2 對角線相等的平行四邊形是矩形
64 菱形性質定理1 菱形的四條邊都相等
65 菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
66 菱形面積=對角線乘積的一半,即S=(a×b)÷2
67 菱形判定定理1 四邊都相等的四邊形是菱形
68 菱形判定定理2 對角線互相垂直的平行四邊形是菱形
69 正方形性質定理1 正方形的四個角都是直角,四條邊都相等
70 正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71 定理1 關于中心對稱的兩個圖形是全等的
72 定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
73 逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一 點平分,那么這兩個圖形關于這一點對稱
74 對角線相等的梯形是等腰梯形
75 平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
76 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
77 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
78 等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
79 等腰梯形的兩條對角線相等
80 等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
大家都在看