平行四邊形的判定:
要證平行四邊形,兩個條件才能行
,一證對邊都相等,或證對邊都平行,
一組對邊也可以,必須相等且平行。
對角線,是個寶,互相平分“跑不了”,
對角相等也有用,“兩組對角”才能成。
梯形問題的輔助線:
移動梯形對角線,兩腰之和成先進;
平行移動一條腰,兩腰同在“△”現(xiàn);
延長兩腰交一點,“△”中有平行線;
作出梯形兩高線,矩形顯示在眼前;
已知腰上一中線,莫忘作出中位線。
添加輔助線歌:
輔助線,怎么添?
找出規(guī)律是關鍵,題中若有角(平)分線,可向兩邊作垂線;
線段垂直平分線,引向兩端把線連,三角形兩邊中點,連接則成中位線;
三角形中有中線,延長中線翻一番。
圓的證明歌:
圓的證明不算難,常把半徑直徑連;
有弦可作弦心距,它定垂直平分弦;
直徑是圓較大弦,直圓周角立上邊,
它若垂直平分弦,垂徑、射影響耳邊;
還有與圓有關角,勿忘相互有關聯(lián),
圓周、圓心、弦切角,細找關系把線連;
同弧圓周角相等,證題用它較多見,
圓中若有弦切角,夾弧找到就好辦;
圓有內接四邊形,對角互補記心間,
外角等于內對角,四邊形定內接圓;
直角相對或共弦,試試加 個輔助圓;
若是證題打轉轉,四點共圓可解難;
要想證明圓切線,垂直半徑過外端,
直線與圓有共點,證垂直來半徑連,
直線與圓未給點,需證半徑作垂線;
四邊形 有內切圓,對邊和等是條件;
如果遇到圓與圓,弄清位置很關鍵,
兩圓相切作公切,兩圓相交連公弦。
圓中比例線段:
遇等積,改等比,橫找豎找定相似;
不相似,別生氣,等線等比來代替,
遇等比,改等積,引用射影和圓冪,
平行線,轉比例,兩端各自找聯(lián)系。
正多邊形訣竅歌:
份相等分割圓,n值必須大于三,
依次連接各分點,內接正n邊形在眼前。
經(jīng)過分點做切線,切線相交n個點。
n個交點做頂點,外切正n邊形便出現(xiàn)。
正n邊形很美觀,它有內接、外切圓,
內接、外切都,兩圓還是同心圓,
它的圖形軸對稱,n條對稱軸 都過圓心點,
如果n值為偶數(shù),中心對稱很方便。
正n邊形做,邊心距、半徑是關鍵,
內切、外接圓半徑,邊心距、半徑分別換,
分成直角三角形2n個整,依此便簡單。
函數(shù)學習口決:
正比例函數(shù)是直線,圖象一定過原點,
k的正負是關鍵,決定直線的象限,
負k經(jīng)過二四限,x增大y在減,
上下平移k不變,由引得到一次線,
向上加b向下減,圖象經(jīng)過三個限,
兩點決定一條線,選定系數(shù)是關鍵。
反比例函數(shù)雙曲線,待定只需一個點,
正k落在一三限,x增大y在減,
圖象上面任意點,矩形面積都不變,
對稱軸是角分線,x、y的順序可交換。
二次函數(shù)拋物線,選定需要三個點,
a的正負開口判,c的大小y軸看,
△的符號較簡便,x軸上數(shù)交點,
a、b同號軸左邊,拋物線平移a不變,
頂點牽著圖象轉,三種形式可變換,
配方法作用較關鍵。
相關閱讀: