資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學(xué)而思1對1 > 初中教育 > 初三期末 > 正文
內(nèi)容頁banner-1對1體驗

2018-2019北京海淀區(qū)初三上學(xué)期期末數(shù)學(xué)試卷評析(原創(chuàng)視頻)

2019-01-16 16:51:59  來源:網(wǎng)站整理

2018-2019北京海淀區(qū)初三上學(xué)期期末數(shù)學(xué)試題評析(原創(chuàng)視頻)!初三的數(shù)學(xué),比起初一和初二,難度系數(shù)增加了可不止一點點了,不論是題目的刁鉆程度,還是題目的過程,都比之前要高級了很多,同學(xué)們做題千萬要注意,別被題目套路了。下面小編為大家?guī)?span style="color:#f00;">2018-2019北京海淀區(qū)初三上學(xué)期期末數(shù)學(xué)試題評析(原創(chuàng)視頻)。

 

 

想要了解【2018-2019北京海淀區(qū)初三上學(xué)期期末數(shù)學(xué)試題評析(原創(chuàng)視頻)】的相關(guān)資料,請點擊加入【愛智康初中交流福利群】愛智康初中交流福利群,并直接向管理員“小康康”索取!愛智康初中交流福利群會不定期免費發(fā)放學(xué)習(xí)資料,初中以及中考政策等相關(guān)消息,請持續(xù)關(guān)注!  

 

 

想要了解【2018-2019北京海淀區(qū)初三上學(xué)期期末數(shù)學(xué)試題評析(原創(chuàng)視頻)】的相關(guān)資料,請點擊加入【愛智康初中交流福利群】愛智康初中交流福利群,并直接向管理員“小康康”索。壑强党踔薪涣鞲@簳欢ㄆ诿赓M發(fā)放學(xué)習(xí)資料,初中以及中考政策等相關(guān)消息,請持續(xù)關(guān)注!  

 

初三數(shù)學(xué)期末復(fù)習(xí)重點內(nèi)容:方程與不等式

 

方程的分類

 

考點2.1 一元一次方程及可以化為一元一次方程的分式方程

 

一元一次方程的概念   

 

1、方程   

 

含有未知數(shù)的等式叫做方程。   

 

2、方程的解   

 

能使方程兩邊相等的未知數(shù)的值叫做方程的解。   

 

3、等式的性質(zhì)   

 

(1)等式的兩邊都加上(或減去)同一個數(shù)或同一個整式,所得結(jié)果仍是等式。     

 

a=b←→a+c=b+c   

 

(2)等式的兩邊都乘以(或除以)同一個數(shù)(除數(shù)不能是零),所得結(jié)果仍是等式。     

 

a=b←→ac=bc (c≠0)   

 

4、一元一次方程   

 

只含有一個未知數(shù),并且未知數(shù)的較高次數(shù)是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的標準形式,a是未知數(shù)x的系數(shù),b是常數(shù)項。

 

注意:解法    

 

一元一次方程的解法:去分母→去括號→移項→合并同類項→系數(shù)化成1→解。驗根

 

說明:對于以為未知數(shù)的較簡方程,若沒有給出字母a和b的取值范圍,其解有下面三種情況:

 

①時一元一次方程,有先進解.

 

②,時,方程無解.

 

③,時,方程有無數(shù)個解.   

 

分式方程   

 

5、分式方程   

 

分母里含有未知數(shù)的方程叫做分式方程。   

 

6、分式方程的一般方法   

 

解分式方程的思想是將"分式方程"轉(zhuǎn)化為"整式方程"。它的一般解法是:   

 

(1)去分母,方程兩邊都乘以較簡公分母   

 

(2)解所得的整式方程   

 

(3)驗根:將所得的根代入較簡公分母,若等于零,就是增根,應(yīng)該舍去;若不等于零,就是原方程的根。   

 

7、分式方程的特殊解法   

 

換元法:   

 

換元法是中學(xué)數(shù)學(xué)中的一個重要的數(shù)學(xué)思想,其應(yīng)用非常廣泛,當分式方程具有某種特殊形式,一般的去分母不易解決時,可考慮用換元法。

 

注意.方程的增根與遺根

 

(1)在方程變形時,能產(chǎn)生不適合原方程的根叫做方程的增根.

 

(2)在方程變形時,由于盲目變形,在方程的兩邊同除以含有未知數(shù)的代數(shù)式,從而導(dǎo)致方程遺根.   

 

8、常用的相等關(guān)系

 

1. 行程問題(勻速運動)   

 

基本關(guān)系:s=vt   

 

⑴相遇問題(同時出發(fā)):  +=;  

 

⑵追及問題(同時出發(fā)):    若甲出發(fā)t小時后,乙才出發(fā),而后在B處追上甲,則    

 

⑶水中航行:;

 

⑷配料問題:溶質(zhì)=溶液×濃度

 

溶液=溶質(zhì)+溶劑   

 

⑸.增長率問題:   

 

⑹.工程問題:基本關(guān)系:工作量=工作效率×工作時間(常把工作量看著單位"1")。   

 

⑺.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關(guān)比例性質(zhì)等。   

 

注意語言與解析式的互化   

 

如,"多"、"少"、"增加了"、"增加為(到)"、"同時"、"擴大為(到)"、"擴大了"、......   

 

又如,一個三位數(shù),百位數(shù)字為a,十位數(shù)字為b,個位數(shù)字為c,則這個三位數(shù)為:100a+10b+c,而不是abc。   

 

注意從語言敘述中寫出相等關(guān)系。 如,x比y大3,則x-y=3或x=y+3或x-3=y。又如,x與y的差為3,則x-y=3。㈤注意單位換算 如,"小時""分鐘"的換算;s、v、t單位的一致等。   

 

列方程(組)解應(yīng)用題   

 

是中學(xué)數(shù)學(xué)聯(lián)系實際的一個重要方面。其具體步驟是:   

 

⑴審題。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。   

 

⑵設(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。   

 

⑶用含未知數(shù)的代數(shù)式表示相關(guān)的量。   

 

⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個數(shù)與方程個數(shù)是相同的。   

 

⑸解方程及檢驗。   

 

⑹答案。   

 

綜上所述,列方程(組)解應(yīng)用題實質(zhì)是先把實際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。

 

考點2.2 二元一次方程組   

 

1、二元一次方程   

 

含有兩個未知數(shù),并且未知項的較高次數(shù)是1的整式方程叫做二元一次方程,它的一般形式是(   

 

2、二元一次方程的解   

 

使二元一次方程左右兩邊的值相等的一對未知數(shù)的值,叫做二元一次方程的一個解。   

 

3、二元一次方程組

 

兩個(或兩個以上)二元一次方程合在一起,就組成了一個二元一次方程組。一般形式:(不全為0)   

 

4、二元一次方程組的解   

 

使二元一次方程組的兩個方程左右兩邊的值都相等的兩個未知數(shù)的值,叫做二元一次方程組的解。   

 

5、二元一次方程組的解法   

 

基本思想:"消元"

 

解法:(1)代入法(2)加減法⑶二元一次方程組一元一次方程組.   

 

6、三元一次方程   

 

把含有三個未知數(shù),并且含有未知數(shù)的項的次數(shù)都是1的整式方程。   

 

7、三元一次方程組

 

由三個(或三個以上)一次方程組成,并且含有三個未知數(shù)的方程組,叫做三元一次方程組。(1)一般形式:

 

(2)解法:

 

三元一次方程組二元一次方程組一元一次方程組.

 

考點2.3一元一次不等式〔組〕

 

1、不等式

 

用不等號表示不等關(guān)系的式子,叫做不等式。a>b、a<b、a≥b、a≤b、a≠b。   

 

2、不等式的解集   

 

對于一個含有未知數(shù)的不等式,任何一個適合這個不等式的未知數(shù)的值,都叫做這個不等式的解。   

 

對于一個含有未知數(shù)的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。   

 

求不等式的解集的過程,叫做解不等式。   

 

3、用數(shù)軸表示不等式的方法   

 

4、不等式基本性質(zhì)

 

⑴、不等式兩邊都加上(或減去)同一個數(shù)或同一個整式,不等號的方向不變。   

 

⑵、不等式兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。   

 

⑶、不等式兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變。    

 

不等式的性質(zhì):⑴a>b←→a+c>b+c         

 

⑵a>b←→ac>bc(c>0)         

 

⑶a>b←→ac

⑷(傳遞性)a>b,b>c→a>c         

 

⑸a>b,c>d→a+c>b+d.   

 

5、一元一次不等式

 

⑴、一元一次不等式的概念

 

一般地,不等式中只含有一個未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。ax>b、ax<b、ax≥b、ax≤b、ax≠b(a≠0)。   

 

⑵、一元一次不等式的解法 (在數(shù)軸上表示解集)   

 

解一元一次不等式的一般步驟:   

 

(1)去分母(2)去括號(3)移項(4)合并同類項(5)將x項的系數(shù)化為1 即通過去分母、去括號、移項合并同類項,把不等式化為(或)()的形式,再把系數(shù)化為1得出不等式的解集.

 

說明:在去分母和化系數(shù)為l時,需特別注意不等式兩邊同時乘以(或除以)一個負數(shù),要將不等號改變方向,其解集情況如下:

 

①當時,(或).

 

②當時,(或).

 

③當時,若,不等式無解(或不等式的解集為一切實數(shù)).

 

④當時,若,不等式的解為一切實數(shù)(或不等式無解).

 

6、一元一次不等式組

 

⑴、一元一次不等式組的概念

 

幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。   

 

幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。   

 

求不等式組的解集的過程,叫做解不等式組。   

 

當任何數(shù)x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。   

 

⑵、一元一次不等式組的解法 (在數(shù)軸上表示解集)   

 

(1)分別求出不等式組中各個不等式的解集   

 

(2)利用數(shù)軸求出這些不等式的解集的公共部分,即這個不等式組的解集。

 

即先求出不等式組中每一個不等式的解集,再利用數(shù)軸求出這些不等式的解集的公共部分,即為不等式組的解集.

 

兩個一元一次不等式所組成的不等式組的解集的一般情況可見下表(其中).口訣不等式組解集在數(shù)軸上表示

 

同小取小

 

同大取大

 

大小取中

 

兩背為空

 

不等式組無解

 

考點2.4 一元二次方程   

 

1、一元二次方程   

 

含有一個未知數(shù),并且未知數(shù)的較高次數(shù)是2的整式方程叫做一元二次方程。   

 

2、一元二次方程的一般形式   

 

它的特征是:等式左邊十一個關(guān)于未知數(shù)x的二次多項式,等式右邊是零,其中叫做二次項,a叫做二次項系數(shù);bx叫做一次項,b叫做一次項系數(shù);c叫做常數(shù)項。

 

3、一元二次方程的解法   

 

①、直接開平方法   

 

利用平方根的定義直接開平方求一元二次方程的解的方法叫做直接開平方法。直接開平方法適用于解形如的一元二次方程。根據(jù)平方根的定義可知,是b的平方根,當時,,,當b<0時,方程沒有實數(shù)根。   

 

②、配方法   

 

配方法是一種重要的數(shù)學(xué)方法,它不僅在解一元二次方程上有所應(yīng)用,而且在數(shù)學(xué)的其他領(lǐng)域也有著廣泛的應(yīng)用。配方法的理論根據(jù)是完全平方公式,把公式中的a看做未知數(shù)x,并用x代替,則有。   

 

③、公式法   

 

公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。   

 

一元二次方程的求根公式:    

 

④、因式分解法   

 

因式分解法就是利用因式分解的手段,求出方程的解的方法,這種方法簡單易行,是解一元二次方程較常用的方法。  

 

4、一元二次方程根的判別式   

 

根的判別式   

 

一元二次方程中,叫做一元二次方程的根的判別式,通常用""來表示,即

 

①方程有兩個不相等的實數(shù)根.

 

②方程有兩個相等的實數(shù)根.

 

③方程無實數(shù)根.

 

④方程有兩個實數(shù)根。

 

反之:①一元二次方程有兩個不等實根

 

②一元二次方程有兩個相等實根

 

③一元二次方程無實根

 

④一元二次方程有兩個實根

 

結(jié)論:(1)若二次三項式是完全平方式,則方程的判別式=0。

 

(2)方程有實數(shù)根,包括兩種情況:①有兩個實數(shù)根,②,只有一個實數(shù)根。

 

說明:根的判別式較常見的用法有:   

 

①不解方程判別一元二次方程根的情況。   

 

②由方程根的情況確定某些字母的值或范圍.

 

小編推薦:

  2018-2019北京海淀區(qū)初二期中診斷語文試題答案解析

  2018-2019北京海淀區(qū)初二期中診斷數(shù)學(xué)試題答案解析

  2018-2019北京海淀區(qū)初二期中診斷英語試題答案解析

 

愛智康小編為大家?guī)淼?strong>2018-2019北京海淀區(qū)初三上學(xué)期期末數(shù)學(xué)試題評析(原創(chuàng)視頻)就介紹到這里,希望能對有需要的同學(xué)們提供幫助,學(xué)期已經(jīng)過去了一大半,落下功課的同學(xué)們可要抓緊時間努力了,如果有任何疑問,歡迎撥打免費咨詢電話:

文章下長方圖-初中12本名著精華版資料包
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對5課程