掃描注冊(cè)有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約課程還可獲贈(zèng)免費(fèi)的學(xué)習(xí)復(fù)習(xí)診斷
點(diǎn)擊預(yù)約→免費(fèi)的1對(duì)1學(xué)科診斷及課程規(guī)劃
從初中到高中高一新生同學(xué)們的學(xué)習(xí)感覺怎么樣?對(duì)于高一數(shù)學(xué)學(xué)習(xí)知識(shí)點(diǎn)內(nèi)容是不是好接受?今天上海愛智康老師給大家準(zhǔn)備了"高一數(shù)學(xué)函數(shù)值學(xué)習(xí)方法",幫助大家復(fù)習(xí)或者預(yù)習(xí)高一數(shù)學(xué)知識(shí),更好的吸收所學(xué)內(nèi)容!
一.觀察法
通過對(duì)函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。
例1求函數(shù)y=3+√(2-3x) 的值域。
點(diǎn)撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x) 的值域。
解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,
本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對(duì)于一類函數(shù)的值域的求法,簡(jiǎn)捷明了,不失為一種巧法。
求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域?yàn)椋簕0,1,2,3,4,5})
二.反函數(shù)法
當(dāng)函數(shù)的反函數(shù)存在時(shí),則其反函數(shù)的定義域就是原函數(shù)的值域。
例2求函數(shù)y=(x+1)/(x+2)的值域。
點(diǎn)撥:先求出原函數(shù)的反函數(shù),再求出其定義域。
解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域?yàn)閥≠1的實(shí)數(shù),故函數(shù)y的值域?yàn)閧y?y≠1,y∈R}。
求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域?yàn)閧y?y<-1 y="">1})
三.配方法
當(dāng)所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復(fù)合函數(shù)時(shí),可以利用配方法求函數(shù)值域
例3:求函數(shù)y=√(-x2+x+2)的值域。
點(diǎn)撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的較值求。
解:由-x2+x+2≥0,可知函數(shù)的定義域?yàn)閤∈[-1,2]。此時(shí)-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
求函數(shù)y=2x-5+√15-4x的值域.(答案:值域?yàn)閧y?y≤3})
四.判別式法
若可化為關(guān)于某變量的二次方程的分式函數(shù)或無(wú)理函數(shù),可用判別式法求函數(shù)的值域。
例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。
點(diǎn)撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應(yīng)用二次方程根的判別式,從而確定出原函數(shù)的值域。
解:將上式化為(y-2)x2-(y-2)x+(y-3)=0 (*)
當(dāng)y≠2時(shí),由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2
求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域?yàn)閥≤-8或y>0)。
五.較值法
對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的較值,可得到函數(shù)y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。
點(diǎn)撥:根據(jù)已知條件求出自變量x的取值范圍,將目標(biāo)函數(shù)消元、配方,可求出函數(shù)的值域。
解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。
當(dāng)x=-1時(shí),z=-5;當(dāng)x=3/2時(shí),z=15/4。
若√x為實(shí)數(shù),則函數(shù)y=x2+3x-5的值域?yàn)?( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
小編會(huì)陪大家高中三年,給大家提供學(xué)習(xí)知識(shí)和高考資訊新聞,如果有需要可以CTRL+D收藏網(wǎng)站及時(shí)獲得資訊。學(xué)而思愛智康網(wǎng)站尊重原創(chuàng)文章,如有侵權(quán),請(qǐng)及時(shí)與我們聯(lián)系,感謝您的閱讀。
預(yù)約課程還可獲贈(zèng)免費(fèi)的學(xué)習(xí)復(fù)習(xí)診斷