掃描注冊有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓
點擊領(lǐng)取>>>2014-2019北京中考真題、北京各區(qū)一模、二模試題及答案解析匯總
2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題!數(shù)學(xué)的難點在于什么地方,同學(xué)們知不知道呢?其實,數(shù)學(xué)的知識點并不多,試題上的很多題目運用的都是一個知識點,同學(xué)們在一個知識點上跌倒,是因為你對這個知識點并不理解下面,小編為大家?guī)?span style="color:#f00;">2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題。
2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
點擊了解>>>學(xué)而思愛智康中考沖刺精品課程&咨詢課程請撥打:
六種解題思想
1.函數(shù)與方程思想 2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
函數(shù)與方程的思想是中學(xué)數(shù)學(xué)較基本的思想。所謂函數(shù)的思想是指用運動變化的觀點去分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),再運用函數(shù)的圖像與性質(zhì)去分析、解決相關(guān)的問題。而所謂方程的思想是分析數(shù)學(xué)中的等量關(guān)系,去構(gòu)建方程或方程組,通過求解或利用方程的性質(zhì)去分析解決問題。
2.數(shù)形結(jié)合思想
數(shù)與形在一定的條件下可以轉(zhuǎn)化。如某些代數(shù)問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關(guān)的代數(shù)三角問題;而某些幾何問題也往往可以通過數(shù)量的結(jié)構(gòu)特征用代數(shù)的方法去解決。因此數(shù)形結(jié)合的思想對問題的解決有舉足輕重的作用。 2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
解題類型
①“由形化數(shù)”:就是借助所給的圖形,仔細(xì)觀察研究,提示出圖形中蘊含的數(shù)量關(guān)系,反映幾何圖形內(nèi)在的屬性。
②“由數(shù)化形” :就是根據(jù)題設(shè)條件正確繪制相應(yīng)的圖形,使圖形能充分反映出它們相應(yīng)的數(shù)量關(guān)系,提示出數(shù)與式的本質(zhì)特征。
③“數(shù)形轉(zhuǎn)換” :就是根據(jù)“數(shù)”與“形”既對立,又統(tǒng)一的特征,觀察圖形的形狀,分析數(shù)與式的結(jié)構(gòu),引起聯(lián)想,適時將它們相互轉(zhuǎn)換,化抽象為直觀并提示隱含的數(shù)量關(guān)系。
3.分類討論思想 2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)孩子的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。
解決分類討論問題的關(guān)鍵是化整為零,在局部討論降低難度。
常見的類型
類型1:由數(shù)學(xué)概念引起的的討論,如實數(shù)、有理數(shù)、少有值、點(直線、圓)與圓的位置關(guān)系等概念的分類討論;2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
類型2:由數(shù)學(xué)運算引起的討論,如不等式兩邊同乘一個正數(shù)還是負(fù)數(shù)的問題;
類型3 :由性質(zhì)、定理、公式的限制條件引起的討論,如一元二次方程求根公式的應(yīng)用引起的討論;
類型4:由圖形位置的不確定性引起的討論,如直角、銳角、鈍角三角形中的相關(guān)問題引起的討論。
類型5:由某些字母系數(shù)對方程的影響造成的分類討論,如二次函數(shù)中字母系數(shù)對圖象的影響,二次項系數(shù)對圖象開口方向的影響,一次項系數(shù)對頂點坐標(biāo)的影響,常數(shù)項對截距的影響等。
分類討論思想是對數(shù)學(xué)對象進(jìn)行分類尋求解答的一種思想方法,其作用在于克服思維的片面性,全面考慮問題。分類的原則:分類不重不漏。2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
4.轉(zhuǎn)化與化歸思想
轉(zhuǎn)化與化歸是中學(xué)數(shù)學(xué)較基本的數(shù)學(xué)思想之一,是一切數(shù)學(xué)思想方法的核心。數(shù)形結(jié)合的思想體現(xiàn)了數(shù)與形的轉(zhuǎn)化;函數(shù)與方程的思想體現(xiàn)了函數(shù)、方程、不等式之間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,所以以上三種思想也是轉(zhuǎn)化與化歸思想的具體呈現(xiàn)。
轉(zhuǎn)化包括等價轉(zhuǎn)化和非等價轉(zhuǎn)化,等價轉(zhuǎn)化要求在轉(zhuǎn)化的過程中前因和后果是充分的也是必要的;不等價轉(zhuǎn)化就只有一種情況,因此結(jié)論要注意檢驗、調(diào)整和補充。轉(zhuǎn)化的原則是將不熟悉和難解的問題轉(zhuǎn)為熟知的、易解的和已經(jīng)解決的問題,將抽象的問題轉(zhuǎn)為具體的和直觀的問題;將復(fù)雜的轉(zhuǎn)為簡單的問題;將一般的轉(zhuǎn)為特殊的問題;將實際的問題轉(zhuǎn)為數(shù)學(xué)的問題等等使問題易于解決。
常見的轉(zhuǎn)化方法:2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
①直接轉(zhuǎn)化法:把原問題直接轉(zhuǎn)化為基本定理、基本公式或基本圖形問題;
②換元法:運用“換元”把式子轉(zhuǎn)化為有理式或使整式降冪等,把較復(fù)雜的函數(shù)、方程、不等式問題轉(zhuǎn)化為易于解決的基本問題;
③數(shù)形結(jié)合法:研究原問題中數(shù)量關(guān)系(解析式)與空間形式(圖形)關(guān)系,通過互相變換獲得轉(zhuǎn)化途徑;
④等價轉(zhuǎn)化法:把原問題轉(zhuǎn)化為一個易于解決的等價命題,達(dá)到化歸的目的;
⑤特殊化方法:把原問題的形式向特殊化形式轉(zhuǎn)化,并證明特殊化后的問題,使結(jié)論適合原問題;2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
⑥構(gòu)造法:“構(gòu)造”一個合適的數(shù)學(xué)模型,把問題變?yōu)橐子诮鉀Q的問題;
⑦坐標(biāo)法:以坐標(biāo)系為工具,用方法解決幾何問題也是轉(zhuǎn)化方法的一個重要途徑。
5.特殊與一般思想
用這種思想解選擇題有時特別有效,這是因為一個命題在普遍意義上成立時,在其特殊情況下也必然成立,根據(jù)這一點,同學(xué)們可以直接確定選擇題中的正確選項。不僅如此,用這種思想方法去探求主觀題的求解策略,也同樣有用。
6.極限思想
極限思想解決問題的一般步驟為:①對于所求的未知量,先設(shè)法構(gòu)思一個與它有關(guān)的變量;②確認(rèn)這變量通過無限過程的結(jié)果就是所求的未知量;③構(gòu)造函數(shù)(數(shù)列)并利用極限法則得出結(jié)果或利用圖形的極限位置直接結(jié)果。2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題
獲取完整版方法:
1.點擊鏈接:https://jinshuju.net/f/1Ki3F0 領(lǐng)取2014-2019北京中考真題、北京各區(qū)一模、二模試題及答案解析匯總,填寫姓名、電話信息后即可跳轉(zhuǎn)百度云盤地址,免費獲取。
這一期的2018年北京市豐臺區(qū)中考數(shù)學(xué)一模試題小編就介紹到這里,同學(xué)們也知道,以前的錯題,現(xiàn)在對你而言,那些都是寶藏了,同學(xué)們要把所有自己不熟悉的題目都復(fù)習(xí)一遍,想了解相關(guān)課程的同學(xué),請撥打?qū)W而思愛智康免費咨詢電話:!
大家都在看
限時免費領(lǐng)取