資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 初中教育 > 初中數(shù)學(xué) > 正文
內(nèi)容頁banner-1對(duì)1體驗(yàn)

北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

2020-05-04 12:09:38  來源:百度文庫(kù)

    點(diǎn)擊領(lǐng)取→北京初二下期中復(fù)習(xí)資料合集

北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)!相信很多同學(xué)們都會(huì)說數(shù)學(xué)難,其實(shí)初中的數(shù)學(xué)真的并不難,只是同學(xué)們沒有掌握好學(xué)習(xí)方法,同學(xué)們要掌握了課本上的基礎(chǔ)知識(shí),并做適當(dāng)?shù)挠?xùn)練,總結(jié)出學(xué)習(xí)技巧和答題的技巧,就會(huì)輕松很多的。下面,小編為大家?guī)?span style="color:#f00;">北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn),希望可以給大家?guī)韼椭鷨褈

北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

  I.定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  II.二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2;+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2;+k [拋物線的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x1)(x-x2) [僅于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

  III.二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x²的圖像,

  可以看出,二次函數(shù)的圖像是一條拋物線。

  IV.拋物線的性質(zhì)

  1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線

  x = -b/2a。

  對(duì)稱軸與拋物線先進(jìn)的交點(diǎn)為拋物線的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)

  2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P [ -b/2a ,(4ac-b^2;)/4a ]。

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。

  當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。

  |a|越大,則拋物線的開口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。

  拋物線與y軸交于(0,c)

  6.拋物線與x軸交點(diǎn)個(gè)數(shù)

  Δ= b^2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。

  Δ= b^2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。

  Δ= b^2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。

點(diǎn)擊了解>>>學(xué)而思愛智康中考沖刺精品課程&咨詢課程請(qǐng)撥打:

  二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱函數(shù))y=ax^2;+bx+c,

  當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),

  即ax^2;+bx+c=0

  此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。

  函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  答案補(bǔ)充

  畫拋物線y=ax2時(shí),應(yīng)先列表,再描點(diǎn),較后連線。列表選取自變量x值時(shí)常以0為中心,選取便于、描點(diǎn)的整數(shù)值,描點(diǎn)連線時(shí)一定要用光滑曲線連接,并注意變化趨勢(shì)。

  二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.

  說明:(1)任何一個(gè)二次函數(shù)通過配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線y=ax2的頂點(diǎn)在原點(diǎn)

  答案補(bǔ)充

  如果圖像經(jīng)過原點(diǎn),并且對(duì)稱軸是y軸,則設(shè)y=ax^2;如果對(duì)稱軸是y軸,但不過原點(diǎn),則設(shè)y=ax^2+k

  定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a<0時(shí),開口方向向下。IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大。)

  則稱y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  x是自變量,y是x的函數(shù)

  二次函數(shù)的三種表達(dá)式

 、僖话闶:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

 、陧旤c(diǎn)式[拋物線的頂點(diǎn) P(h,k) ]:y=a(x-h)^2+k

 、劢稽c(diǎn)式[僅于與x軸有交點(diǎn) A(x1,0) 和 B(x2,0) 的拋物線]:y=a(x-x1)(x-x2)

  以上3種形式可進(jìn)行如下轉(zhuǎn)化:

  ①一般式和頂點(diǎn)式的關(guān)系

  對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即

  h=-b/2a=(x1+x2)/2

  k=(4ac-b^2)/4a

 、谝话闶胶徒稽c(diǎn)式的關(guān)系

  x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

中考考察的初中三年所學(xué)的知識(shí)點(diǎn),初三的同學(xué)們一定要認(rèn)真復(fù)習(xí)喲,想了解相關(guān)課程的同學(xué),請(qǐng)撥打?qū)W而思愛智康免費(fèi)咨詢電話:!

北京初中數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)就給大家分享到這里,另外學(xué)而思學(xué)科老師還給大家整理了一份《北京初二下期中復(fù)習(xí)資料合集》。

  點(diǎn)擊領(lǐng)。骸北京初二下期中復(fù)習(xí)資料合集》復(fù)習(xí)資料

查缺補(bǔ)漏,助你備戰(zhàn)期中診斷!

部分資料截圖如下:

點(diǎn)擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/EYm9ow

同時(shí)也向您的孩子推薦學(xué)而思愛智康中考沖刺精品課程,點(diǎn)擊鏈接:http://yushangyun.cn/z2019/zkzfx/index.html 或者下方圖片即可預(yù)約

相關(guān)推薦:

 北京初中數(shù)學(xué)四邊形知識(shí)點(diǎn)

 北京中功課整式運(yùn)算部分

 北京初中二次方程題目

文章下長(zhǎng)方圖-初中12本名著精華版資料包
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們?cè)?4小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對(duì)5課程