資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 舊站備份 > 正文
內(nèi)容頁(yè)banner-一對(duì)一體驗(yàn)

解決排列組合問題常見策略

2009-10-09 12:03:52  來(lái)源:本站原創(chuàng) 文章作者:匿名

 

排列、組合問題是高中數(shù)學(xué)的重要知識(shí)之一,由于解這類問題時(shí)方法靈活,切入點(diǎn)多,且抽象性強(qiáng),在做題過程中發(fā)生重復(fù)或遺漏現(xiàn)象不易被發(fā)現(xiàn),所以成為學(xué)習(xí)的難點(diǎn)之一。如果在解決排列、組合問題時(shí),注意常見的解題策略,則會(huì)降低學(xué)習(xí)這部分知識(shí)的難度。

1. 合理選擇主元

 

例1. 公共汽車上有3個(gè)座位,現(xiàn)在上來(lái)5名乘客,每人坐1個(gè)座位,有幾種不同的坐法?

例2. 公共汽車上有5個(gè)座位,現(xiàn)在上來(lái)3名乘客,每人坐1個(gè)座位,有幾種不同的坐法?

分析:例1中將5名乘客看作5個(gè)元素,3個(gè)空位看作3個(gè)位置,則問題變?yōu)閺?個(gè)不同的元素中任選3個(gè)元素放在3個(gè)位置上,共有 種不同坐法。例2中再把乘客看作元素問題就變得比較復(fù)雜,將5個(gè)空位看作元素,而將乘客看作位置,則例2變成了例1,所以在解決排列組合問題時(shí),合理選擇主元,就是選擇合適解題方法的突破口。

 

    2. 相鄰問題捆綁法

 

若元素(或位置)相鄰,則將它們“捆綁”在一起,看作一個(gè)元素進(jìn)行,然后再交換相鄰元素(或位置)內(nèi)部順序算出總數(shù)。

例3. 5名女生3名男生站成一排照相,其中3名男生站在一起,共有多少種不同的站法?

解:先把3名男生“捆綁”在一起當(dāng)作一個(gè)元素,連同其余5名女生共6個(gè)元素,進(jìn)行排列,再交換3名男生的位置

 

 

 

 

3. 不相鄰用插空法

 

對(duì)于一些元素(或位置)不相鄰的排列、組合問題,應(yīng)先將其他元素(或位置)排好,再把不相鄰的元素(或位置)在已排好的元素(或位置)間插空。

例4. 5名女生3名男生站成一排照相,其中3名男生互不相鄰共有多少種站法?

解:先將5名女生排好,將3名男生插在5名女生之間的6個(gè)空位中

 

 

 

 

4. “至少”型組合問題用隔板法

 

對(duì)于“至少”型組合問題,先轉(zhuǎn)化為“至少一個(gè)”型組合問題,再用n個(gè)隔板插在元素的空隙(不包括首尾)中,將元素分成n+1份。

例5. 4名孩子分6本相同的書,每人至少1本,有多少種不同分法?

解:將6本書分成4份,先把書排成一排,插入3個(gè)隔板,6本書中間有5個(gè)空隙

 

 

 

 

5. 注意合理分類

 

元素(或位置)的“地位”不相同時(shí),不可直接用排列組合數(shù)公式,則要根據(jù)元素(或位置)的特殊性進(jìn)行合理分類,求出各類排列組合數(shù)。再用分類計(jì)數(shù)原理求出總數(shù)。

例6. 求用0,1,2,3,4,5六個(gè)數(shù)字組成的比2015大的無(wú)重復(fù)數(shù)字的四位數(shù)的個(gè)數(shù)。

解:比2015大的四位數(shù)可分成以下三類:

先進(jìn)類:3×××,4×××,5×××,共有: (個(gè));

第二類:21××,23××,24××,25××,共有: (個(gè));

第三類:203×,204×,205×,共有: (個(gè))

∴比2015大的四位數(shù)共有237個(gè)。

文章下長(zhǎng)方圖-作文精選
你可能感興趣的文章
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們?cè)?4小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對(duì)1寒假