資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當(dāng)前位置:北京學(xué)而思1對1 > 高中教育 > 高中數(shù)學(xué) > 正文
內(nèi)容頁banner-1對1體驗

北京高二數(shù)學(xué)常用解題方法

2016-07-08 11:22:06  來源:網(wǎng)絡(luò)整理

  北京高二數(shù)學(xué)常用解題方法!在解答某些數(shù)學(xué)題的時候,會有一些特定的解題方法,掌握了這些解題方法,同學(xué)們可以輕松的攻克數(shù)學(xué)難題。為了幫助同學(xué)們學(xué)好高中數(shù)學(xué),智康1對1高考頻道小編就將北京高二數(shù)學(xué)常用解題方法分享給同學(xué)們,希望給同學(xué)們帶來一定的幫助。

北京高二數(shù)學(xué)常用解題方法


  北京高二數(shù)學(xué)常用解題方法一、參數(shù)法


  參數(shù)法是指在解題過程中,通過適當(dāng)引入一些與題目研究的數(shù)學(xué)對象發(fā)生聯(lián)系的新變量(參數(shù)),以此作為媒介,再進(jìn)行分析和綜合,從而解決問題。直線與二次曲線的參數(shù)方程都是用參數(shù)法解題的例證。換元法也是引入?yún)?shù)的典型例子。


  辨證唯物論肯定了事物之間的聯(lián)系是無窮的,聯(lián)系的方式是豐富多采的,科學(xué)的任務(wù)就是要揭示事物之間的內(nèi)在聯(lián)系,從而發(fā)現(xiàn)事物的變化規(guī)律。參數(shù)的作用就是刻畫事物的變化狀態(tài),揭示變化因素之間的內(nèi)在聯(lián)系。參數(shù)體現(xiàn)了近代數(shù)學(xué)中運動與變化的思想,其觀點已經(jīng)滲透到中學(xué)數(shù)學(xué)的各個分支。運用參數(shù)法解題已經(jīng)比較普遍。


  參數(shù)法解題的關(guān)鍵是恰到好處地引進(jìn)參數(shù),溝通已知和未知之間的內(nèi)在聯(lián)系,利用參數(shù)提供的信息,順利地解答問題。


  北京高二數(shù)學(xué)常用解題方法二、換元法


  解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這叫換元法。換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。


  換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來。或者變?yōu)槭煜さ男问,把?fù)雜的和推證簡化。


  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。


  北京高二數(shù)學(xué)常用解題方法三、待定系數(shù)法


  要確定變量間的函數(shù)關(guān)系,設(shè)出某些未知系數(shù),然后根據(jù)所給條件來確定這些未知系數(shù)的方法叫待定系數(shù)法,其理論依據(jù)是多項式恒等,也就是利用了多項式f(x)g(x)的充要條件是:對于一個任意的a值,都有f(a)g(a);或者兩個多項式各同類項的系數(shù)對應(yīng)相等。


  待定系數(shù)法解題的關(guān)鍵是依據(jù)已知,正確列出等式或方程。使用待定系數(shù)法,就是把具有某種確定形式的數(shù)學(xué)問題,通過引入一些待定的系數(shù),轉(zhuǎn)化為方程組來解決,要判斷一個問題是否用待定系數(shù)法求解,主要是看所求解的數(shù)學(xué)問題是否具有某種確定的數(shù)學(xué)表達(dá)式,如果具有,就可以用待定系數(shù)法求解。例如分解因式、拆分分式、數(shù)列求和、求函數(shù)式、求復(fù)數(shù)、解析幾何中求曲線方程等,這些問題都具有確定的數(shù)學(xué)表達(dá)形式,所以都可以用待定系數(shù)法求解。


  使用待定系數(shù)法,它解題的基本步驟是:


  先進(jìn)步,確定所求問題含有待定系數(shù)的解析式;


  第二步,根據(jù)恒等的條件,列出一組含待定系數(shù)的方程;


  第三步,解方程組或者消去待定系數(shù),從而使問題得到解決。


  如何列出一組含待定系數(shù)的方程,主要從以下幾方面著手分析:


 、倮脤(yīng)系數(shù)相等列方程;


  ②由恒等的概念用數(shù)值代入法列方程;


 、劾枚x本身的屬性列方程;


 、芾脦缀螚l件列方程。


  比如在求圓錐曲線的方程時,我們可以用待定系數(shù)法求方程:首先設(shè)所求方程的形式,其中含有待定的系數(shù);再把幾何條件轉(zhuǎn)化為含所求方程未知系數(shù)的方程或方程組;較后解所得的方程或方程組求出未知的系數(shù),并把求出的系數(shù)代入已經(jīng)明確的方程形式,得到所求圓錐曲線的方程。


  北京高二數(shù)學(xué)常用解題方法四、定義法


  所謂定義法,就是直接用數(shù)學(xué)定義解題。數(shù)學(xué)中的定理、公式、性質(zhì)和法則等,都是由定義和公理推演出來。定義是揭示概念內(nèi)涵的邏輯方法,它通過指出概念所反映的事物的本質(zhì)屬性來明確概念。


  定義是千百次實踐后的必然結(jié)果,它科學(xué)地反映和揭示了客觀世界的事物的本質(zhì)特點。簡單地說,定義是基本概念對數(shù)學(xué)實體的高度抽象。用定義法解題,是較直接的方法,本講讓我們回到定義中去。


  北京高二數(shù)學(xué)常用解題方法五、數(shù)學(xué)歸納法


  歸納是一種有特殊事例導(dǎo)出一般原理的思維方法。歸納推理分完全歸納推理與不完全歸納推理兩種。不完全歸納推理只根據(jù)一類事物中的部分對象具有的共同性質(zhì),推斷該類事物全體都具有的性質(zhì),這種推理方法,在數(shù)學(xué)推理論證中是不允許的。完全歸納推理是在考察了一類事物的全部對象后歸納得出結(jié)論來。


  數(shù)學(xué)歸納法是用來證明某些與自然數(shù)有關(guān)的數(shù)學(xué)命題的一種推理方法,在解數(shù)學(xué)題中有著廣泛的應(yīng)用。它是一個遞推的數(shù)學(xué)論證方法,論證的先進(jìn)步是證明命題在n=1(或n)時成立,這是遞推的基礎(chǔ);第二步是假設(shè)在n=k時命題成立,再證明n=k+1時命題也成立,這是無限遞推下去的理論依據(jù),它判斷命題的正確性能否由特殊推廣到一般,實際上它使命題的正確性突破了有限,達(dá)到無限。這兩個步驟密切相關(guān),缺一不可,完成了這兩步,就可以斷定\\\"對任何自然數(shù)(或n≥n且n∈N)結(jié)論都正確\\\"。由這兩步可以看出,數(shù)學(xué)歸納法是由遞推實現(xiàn)歸納的,屬于完全歸納。


  運用數(shù)學(xué)歸納法證明問題時,關(guān)鍵是n=k+1時命題成立的推證,此步證明要具有目標(biāo)意識,注意與較終要達(dá)到的解題目標(biāo)進(jìn)行分析比較,以此確定和調(diào)控解題的方向,使差異逐步減小,較終實現(xiàn)目標(biāo)完成解題。


  運用數(shù)學(xué)歸納法,可以證明下列問題:與自然數(shù)n有關(guān)的恒等式、代數(shù)不等式、三角不等式、數(shù)列問題、幾何問題、整除性問題等等。


  北京高二數(shù)學(xué)常用解題方法!就為同學(xué)們分享到這里了,如果大家還有什么問題的話,請直接撥打免費咨詢電話:4000-121-121!有專業(yè)的老師為您解答!

文章下長方圖-高三一輪復(fù)習(xí)史地政資料
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對1