掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門(mén)課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線(xiàn)),滿(mǎn)足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
高一數(shù)學(xué)必修知識(shí)點(diǎn):兩個(gè)平面的位置關(guān)系
。1)兩個(gè)平面互相平行的定義:空間兩平面沒(méi)有公共點(diǎn)
。2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行-----沒(méi)有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線(xiàn)。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線(xiàn)平行。
b、相交
二面角
(1)半平面:平面內(nèi)的一條直線(xiàn)把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
。2)二面角:從一條直線(xiàn)出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]
(3)二面角的棱:這一條直線(xiàn)叫做二面角的棱。
。4)二面角的面:這兩個(gè)半平面叫做二面角的面。
。5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線(xiàn),這兩條射線(xiàn)所成的角叫做二面角的平面角。
。6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說(shuō)這兩個(gè)平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線(xiàn),那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線(xiàn)的直線(xiàn)垂直于另一個(gè)平面。
Attention:
二面角求法:直接法(作出平面角)、三垂線(xiàn)定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
多面體
棱柱
棱柱的定義:有兩個(gè)面互相平行,其余各面都是四邊形,并且每?jī)蓚(gè)四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。
棱柱的性質(zhì)
(1)側(cè)棱都相等,側(cè)面是平行四邊形
。2)兩個(gè)底面與平行于底面的截面是全等的多邊形
。3)過(guò)不相鄰的兩條側(cè)棱的截面(對(duì)角面)是平行四邊形
棱錐
棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐
棱錐的性質(zhì):
。1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形
。2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方
正棱錐
正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。
正棱錐的性質(zhì):
(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。
。3)多個(gè)特殊的直角三角形
esp:
a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線(xiàn)定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。
b、四面體中有三對(duì)異面直線(xiàn),若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。
大家都在看