預(yù)約課程還可獲贈免費的學(xué)習(xí)復(fù)習(xí)診斷
點擊預(yù)約→免費的1對1學(xué)科診斷及課程規(guī)劃
初中幾何輔助線口訣(含經(jīng)典題解析)!輔助線對于同學(xué)們來說都不陌生,解幾何題的時候經(jīng)常用到。當(dāng)題目給出的條件不夠時,我們通過添加輔助線構(gòu)成新圖形,形成新關(guān)系,使分散的條件集中。下文上海愛智康小編搜集了初中幾何輔助線口訣(含經(jīng)典題解析),供學(xué)習(xí)參考!
初中幾何輔助線口訣(含經(jīng)典題解析)
三角形
圖中有角平分線,可向兩邊作垂線。也可將圖對折看,對稱以后關(guān)系現(xiàn)。
角平分線平行線,等腰三角形來添。角平分線加垂線,三線合一試試看。
線段垂直平分線,常向兩端把線連。線段和差及倍半,延長縮短可試驗。
線段和差不等式,移到同一三角去。三角形中兩中點,連接則成中位線。
三角形中有中線,倍長中線得全等。
四邊形
平行四邊形出現(xiàn),對稱中心等分點。梯形問題巧轉(zhuǎn)換,變?yōu)槿腔蚱剿摹?br />
平移腰,移對角,兩腰延長作出高。如果出現(xiàn)腰中點,細(xì)心連上中位線。
上述方法不奏效,過腰中點全等造。證相似,比線段,添線平行成習(xí)慣。
等積式子比例換,尋找線段很關(guān)鍵。直接證明有困難,等量代換少麻煩。
斜邊上面作高線,比例中項一大片。
圓形
半徑與弦長,弦心距來中間站。圓上若有一切線,切點圓心半徑聯(lián)。
切線長度的,勾股定理較方便。要想證明是切線,半徑垂線仔細(xì)辨。
是直徑,成半圓,想成直角徑連弦。弧有中點圓心連,垂徑定理要記全。
圓周角邊兩條弦,直徑和弦端點連。弦切角邊切線弦,同弧對角等找完。
要想作個外接圓,各邊作出中垂線。還要作個內(nèi)接圓,內(nèi)角平分線夢圓。
如果遇到相交圓,不要忘作公共弦。內(nèi)外相切的兩圓,經(jīng)過切點公切線。
若是添上連心線,切點肯定在上面。要作等角添個圓,證明題目少困難。
由角平分線想到的輔助線
一、截取構(gòu)全等
如圖,AB//CD,BE平分∠ABC,CE平分∠BCD,點E在AD上,求證:BC=AB+CD。
分析:在此題中可在長線段BC上截取BF=AB,再證明CF=CD,從而達(dá)到證明的目的。這里面用到了角平分線來構(gòu)造全等三角形。另外一個全等自已證明。此題的證明也可以延長BE與CD的延長線交于一點來證明。自已試一試。
二、角分線上點向兩邊作垂線構(gòu)全等
如圖,已知AB>AD, ∠BAC=∠FAC,CD=BC。求證:∠ADC+∠B=180
分析:可由C向∠BAD的兩邊作垂線。近而證∠ADC與∠B之和為平角。
三、三線合一構(gòu)造等腰三角形
如圖,AB=AC,∠BAC=90 ,AD為∠ABC的平分線,CE⊥BE.求證:BD=2CE。
分析:延長此垂線與另外一邊相交,得到等腰三角形,隨后全等。
四、角平分線+平行線
如圖,AB>AC, ∠1=∠2,求證:AB-AC>BD-CD。
分析:AB上取E使AC=AE,通過全等和組成三角形邊邊邊的關(guān)系可證。
由線段和差想到的輔助線
截長補短法
AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求證:AE=AD+BE。
分析:過C點作AD垂線,得到全等即可。
預(yù)約課程還可獲贈免費的學(xué)習(xí)復(fù)習(xí)診斷