資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當(dāng)前位置:北京學(xué)而思1對1 > 高中教育 > 高二期末 > 正文
內(nèi)容頁banner-1對1體驗

2018-2019北京朝陽區(qū)高二上學(xué)期期末考試數(shù)學(xué)試題及答案

2018-12-15 11:05:15  來源:網(wǎng)絡(luò)整理

  2018-2019北京朝陽區(qū)高二上學(xué)期期末診斷數(shù)學(xué)試題及答案!期末考結(jié)束,數(shù)學(xué)診斷卷新鮮出爐。每年高考三角公式都是重點,大家一定要“倒背如流”。下面是小編給大家找到的2018-2019北京朝陽區(qū)高二上學(xué)期期末診斷數(shù)學(xué)試題及答案!期末結(jié)束,大家寒假愉快。

 

 

  2018-2019北京朝陽區(qū)高二上學(xué)期期末診斷數(shù)學(xué)試題及答案

 

暫未公布

2018-2019北京朝陽區(qū)高二上學(xué)期期末診斷數(shù)學(xué)試題及答案暫時沒有公布,診斷結(jié)束后,會先進時間分享給大家,所以大家要時時關(guān)注哈!


  高中數(shù)學(xué)公式大全結(jié)

 

  高中數(shù)學(xué)公式大全


  拋物線:y = ax *+ bx + c


  就是y等于ax 的平方加上 bx再加上 c


  a > 0時開口向上

 

  (一)橢圓周長公式


  橢圓周長公式:L=2πb+4(a-b)


  橢圓周長定理:橢圓的周長等于該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。


  (二)橢圓面積公式


  橢圓面積公式: S=πab


  橢圓面積定理:橢圓的面積等于圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。


  以上橢圓周長、面積公式中雖然沒有出現(xiàn)橢圓周率T,但這兩個公式都是通過橢圓周率T推導(dǎo)演變而來。常數(shù)為體,公式為用。


  橢圓形物體 體積公式橢圓 的 長半徑*短半徑*PAI*高


  三角函數(shù):


  兩角和公式


  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA


  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB


  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)


  cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)


  倍角公式


  tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota


  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a


  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0


  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及


  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2


  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0


  四倍角公式:


  sin4A=-4*(cosA*sinA*(2*sinA^2-1))


  cos4A=1+(-8*cosA^2+8*cosA^4)


  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)


  五倍角公式:


  sin5A=16sinA^5-20sinA^3+5sinA


  cos5A=16cosA^5-20cosA^3+5cosA


  tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)


  六倍角公式:


  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))


  cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))


  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)


  七倍角公式:


  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))


  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))


  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)


  八倍角公式:


  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))


  cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)


  tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)


  九倍角公式:


  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))


  cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))


  tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)


  十倍角公式:


  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))


  cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))


  tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)


  ·通用公式:


  sinα=2tan(α/2)/[1+tan^2(α/2)]


  cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]


  tanα=2tan(α/2)/[1-tan^2(α/2)]


  半角公式


  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)


  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)


  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))


  cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))


  和差化積


  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)


  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)


  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)


  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB


  cotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB


  某些數(shù)列前n項和


  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2


  2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6


  1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3


  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑


  余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角


  乘法與因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)


  三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b


  -b≤a≤b


  |a-b|≥|a|-|b| -|a|≤a≤|a|


  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a


  根與系數(shù)的關(guān)系 x1+x2=-b/a x1*x2=c/a 注:韋達定理


  判別式 b2-4a=0 注:方程有相等的兩實根


  b2-4ac>0 注:方程有兩個不相等的個實根


  b2-4ac0


  拋物線標(biāo)準(zhǔn)方程 y2=2px y2=-2px x2=2py x2=-2py


  直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h


  正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h'


  圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2


  圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l


  弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r


  錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h


  斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長


  柱體體積公式 V=s*h 圓柱體 V=pi*r2h


  圖形周長 面積 體積公式


  長方形的周長=(長+寬)×2


  正方形的周長=邊長×4


  長方形的面積=長×寬


  正方形的面積=邊長×邊長


  三角形的面積


  已知三角形底a,高h,則S=ah/2


  已知三角形三邊a,b,c,半周長p,則S= √[p(p - a)(p - b)(p - c)] (海倫公式)(p=(a+b+c)/2)


  和:(a+b+c)*(a+b-c)*1/4


  已知三角形兩邊a,b,這兩邊夾角C,則S=absinC/2


  設(shè)三角形三邊分別為a、b、c,內(nèi)切圓半徑為r


  則三角形面積=(a+b+c)r/2


  設(shè)三角形三邊分別為a、b、c,外接圓半徑為r


  則三角形面積=abc/4r


  已知三角形三邊a、b、c,則S= √{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求積” 南宋秦九韶)


  | a b 1 |


  S△=1/2 * | c d 1 |


  | e f 1 |


  【| a b 1 |


  | c d 1 | 為三階行列式,此三角形ABC在平面直角坐標(biāo)系內(nèi)A(a,b),B(c,d), C(e,f),這里ABC


  | e f 1 |


  選區(qū)取較好按逆時針順序從右上角開始取,因為這樣取得出的結(jié)果一般都為正值,如果不按這個規(guī)則取,可能會得到負值,但不要緊,只要取少有值就可以了,不會影響三角形面積的大小!】


  秦九韶三角形中線面積公式:


  S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3


  其中Ma,Mb,Mc為三角形的中線長.


  平行四邊形的面積=底×高


  梯形的面積=(上底+下底)×高÷2


  直徑=半徑×2 半徑=直徑÷2


  圓的周長=圓周率×直徑=


  圓周率×半徑×2


  圓的面積=圓周率×半徑×半徑


  長方體的表面積=


  (長×寬+長×高+寬×高)×2


  長方體的體積 =長×寬×高


  正方體的表面積=棱長×棱長×6


  正方體的體積=棱長×棱長×棱長


  圓柱的側(cè)面積=底面圓的周長×高


  圓柱的表面積=上下底面面積+側(cè)面積


  圓柱的體積=底面積×高


  圓錐的體積=底面積×高÷3


  長方體(正方體、圓柱體)


  的體積=底面積×高


  平面圖形


  名稱 符號 周長C和面積S


  正方形 a—邊長 C=4a


  S=a2


  長方形 a和b-邊長 C=2(a+b)


  S=ab


  三角形 a高中數(shù)學(xué)公式大全高中數(shù)學(xué)公式大全,


  b,c-三邊長


  h-a邊上的高


  s-周長的一半


  A,B,C-內(nèi)角


  其中s=(a+b+c)/2 S=ah/2


  =ab/2?sinC


  =[s(s-a)(s-b)(s-c)]1/2


  =a2sinBsinC/(2sinA)


  1 過兩點有且只有一條直線


  2 兩點之間線段較短


  3 同角或等角的補角相等


  4 同角或等角的余角相等


  5 過一點有且只有一條直線和已知直線垂直


  6 直線外一點與直線上各點連接的所有線段中高中數(shù)學(xué)公式大全,垂線段較短


  7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行


  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行


  9 同位角相等,兩直線平行


  10 內(nèi)錯角相等,兩直線平行


  11 同旁內(nèi)角互補,兩直線平行


  12兩直線平行,同位角相等


  13 兩直線平行高中數(shù)學(xué)公式大全,內(nèi)錯角相等


  14 兩直線平行,同旁內(nèi)角互補


  15 定理 三角形兩邊的和大于第三邊


  16 推論 三角形兩邊的差小于第三邊


  17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°


  18 推論1 直角三角形的兩個銳角互余


  19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和


  20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角


  21 全等三角形的對應(yīng)邊、對應(yīng)角相等


  22邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等


  23 角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等


  24 推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等


  25 邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個三角形全等


  26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等


  27 定理1 在角的平分線上的點到這個角的兩邊的距離相等


  28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上


  29 角的平分線是到角的兩邊距離相等的所有點的集合


  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)


  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊


  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合


  33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°


  34 等腰三角形的判定定理 如果一個三角形有兩個角相等高中數(shù)學(xué)公式大全,那么這兩個角所對的邊也相等(等角對等邊)


  35 推論1 三個角都相等的三角形是等邊三角形


  36 推論 2 有一個角等于60°的等腰三角形是等邊三角形


  37 在直角三角形中, 如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半


  38 直角三角形斜邊上的中線等于斜邊上的一半


  39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等


  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上


  41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合


  42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形


  43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上


  45逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱


  46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2


  47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 ,那么這個三角形是直角三角形


  48定理 四邊形的內(nèi)角和等于360°


  49四邊形的外角和等于360°


  50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°


  51推論 任意多邊的外角和等于360°


  52平行四邊形性質(zhì)定理1 平行四邊形的對角相等


  53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等


  54推論 夾在兩條平行線間的平行線段相等


  55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分


  56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形


  57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形


  58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形


  59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形


  60矩形性質(zhì)定理1 矩形的四個角都是直角


  61矩形性質(zhì)定理2 矩形的對角線相等


  62矩形判定定理1 有三個角是直角的四邊形是矩形


  63矩形判定定理2 對角線相等的平行四邊形是矩形


  64菱形性質(zhì)定理1 菱形的四條邊都相等


  65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角


  66菱形面積=對角線乘積的一半,即s=(a×b)÷2


  67菱形判定定理1 四邊都相等的四邊形是菱形


  68菱形判定定理2 對角線互相垂直的平行四邊形是菱形


  69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等


  70正方形性質(zhì)定理2正方形的兩條對角線相等高中數(shù)學(xué)公式大全,并且互相垂直平分,每條對角線平分一組對角


  71定理1 關(guān)于中心對稱的兩個圖形是全等的


  72定理2 關(guān)于中心對稱的兩個圖形, 對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分


  73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱


  74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等


  75等腰梯形的兩條對角線相等


  76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形


  77對角線相等的梯形是等腰梯形


  78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等


  79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰


  80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊


  81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半


  82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 l=(a+b)÷2 s=l×h


  83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d


  84 (2)合比性質(zhì) 如果a/b=c/d高中數(shù)學(xué)公式大全高中數(shù)學(xué)公式大全,那么(a±b)/b=(c±d)/d


  85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b


  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例


  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例


  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊


  89 平行于三角形的一邊高中數(shù)學(xué)公式大全,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例


  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似


  91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(asa)


  92 直角三角形被斜邊上的優(yōu)異成的兩個直角三角形和原三角形相似


  93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)


  94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(sss)


  95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似


  96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比


  97 性質(zhì)定理2 相似三角形周長的比等于相似比


  98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方


  99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等


  于它的余角的正弦值


  100任意銳角的正切值等于它的余角的余切值,


  任意銳角的余切值等于它的余角的正切值


  101圓是定點的距離等于定長的點的集合


  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合


  103圓的外部可以看作是圓心的距離大于半徑的點的集合


  104同圓或等圓的半徑相等


  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓


  106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線


  107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線


  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線


  109定理 不在同一直線上的三點確定一個圓。


  110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧


  111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧


 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧


 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧


  112推論2 圓的兩條平行弦所夾的弧相等


  113圓是以圓心為對稱中心的中心對稱圖形


  114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等


  115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等


  116定理 一條弧所對的圓周角等于它所對的圓心角的一半


  117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中高中數(shù)學(xué)公式大全高中數(shù)學(xué)公式大全高中數(shù)學(xué)公式大全,相等的圓周角所對的弧也相等


  118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑


  119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形


  120定理 圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角


  121①直線l和⊙o相交 d


 、谥本l和⊙o相切 d=r


 、壑本l和⊙o相離 d>r


  122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線


  123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑


  124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點


  125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心


  126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角


  127圓的外切四邊形的兩組對邊的和相等


  128弦切角定理 弦切角等于它所夾的弧對的圓周角


  129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等


  130相交弦定理 圓內(nèi)的兩條相交弦,


  被交點分成的兩條線段長的積相等


  131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的


  兩條線段的比例中項


  132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割


  線與圓交點的兩條線段長的比例中項


  133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等


  134如果兩個圓相切,那么切點一定在連心線上


  135①兩圓外離 d>r+r ②兩圓外切 d=r+r


 、蹆蓤A相交 r-rr)


 、軆蓤A內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含dr)


  136定理 相交兩圓的連心線垂直平分兩圓的公共弦


  137定理 把圓分成n(n≥3):


  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形


 、平(jīng)過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形


  138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓


  139正n邊形的每個內(nèi)角都等于(n-2)×180°/n


  140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形


  141正n邊形的面積sn=pnrn/2 p表示正n邊形的周長


  142正三角形面積√3a/4 a表示邊長


  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為


  360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4


  144弧長公式:l=nπr/180


  145扇形面積公式:s扇形=nπr2/360=lr/2


  146內(nèi)公切線長= d-(r-r) 外公切線長= d-(r+r)


  147等腰三角形的兩個底腳相等


  148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合


  149如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等


  150三條邊都相等的三角形叫做等邊三角形


  1 過兩點有且只有一條直線


  2 兩點之間線段較短


  3 同角或等角的補角相等


  4 同角或等角的余角相等


  5 過一點有且只有一條直線和已知直線垂直


  6 直線外一點與直線上各點連接的所有線段中,垂線段較短


  7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行


  8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行


  9 同位角相等,兩直線平行


  10 內(nèi)錯角相等,兩直線平行


  11 同旁內(nèi)角互補,兩直線平行


  12兩直線平行,同位角相等


  13 兩直線平行, 內(nèi)錯角相等


  14 兩直線平行,同旁內(nèi)角互補


  15 定理 三角形兩邊的和大于第三邊


  16 推論 三角形兩邊的差小于第三邊


  17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°


  18 推論1 直角三角形的兩個銳角互余


  19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和


  20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角


  21 全等三角形的對應(yīng)邊、對應(yīng)角相等


  22邊角邊公理(sas) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等


  23 角邊角公理( asa)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等


  24 推論(aas) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等


  25 邊邊邊公理(sss) 有三邊對應(yīng)相等的兩個三角形全等


  26 斜邊、直角邊公理(hl) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等


  27 定理1 在角的平分線上的點到這個角的兩邊的距離相等


  28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上


  29 角的平分線是到角的兩邊距離相等的所有點的集合


  30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)


  31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊


  32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合


  33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°


  34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)


  35 推論1 三個角都相等的三角形是等邊三角形


  36 推論 2 有一個角等于60°的等腰三角形是等邊三角形


  37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半


  38 直角三角形斜邊上的中線等于斜邊上的一半


  39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等


  40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上


  41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合


  42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形


  43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線 44定理3 兩個圖形關(guān)于某直線對稱高中數(shù)學(xué)公式大全,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上


  45逆定理 如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱


  46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2


  47勾股定理的逆定理 如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2 , 那么這個三角形是直角三角形


  48定理 四邊形的內(nèi)角和等于360°


  49四邊形的外角和等于360°


  50多邊形內(nèi)角和定理 n邊形的內(nèi)角的和等于(n-2)×180°


  51推論 任意多邊的外角和等于360°


  52平行四邊形性質(zhì)定理1 平行四邊形的對角相等


  53平行四邊形性質(zhì)定理2 平行四邊形的對邊相等


  54推論 夾在兩條平行線間的平行線段相等


  55平行四邊形性質(zhì)定理3 平行四邊形的對角線互相平分


  56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形


  57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形


  58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形


  59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形


  60矩形性質(zhì)定理1 矩形的四個角都是直角


  61矩形性質(zhì)定理2 矩形的對角線相等


  62矩形判定定理1 有三個角是直角的四邊形是矩形


  63矩形判定定理2 對角線相等的平行四邊形是矩形


  64菱形性質(zhì)定理1 菱形的四條邊都相等


  65菱形性質(zhì)定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角


  66菱形面積=對角線乘積的一半,即s=(a×b)÷2


  67菱形判定定理1 四邊都相等的四邊形是菱形


  68菱形判定定理2 對角線互相垂直的平行四邊形是菱形


  69正方形性質(zhì)定理1 正方形的四個角都是直角,四條邊都相等


  70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角


  71定理1 關(guān)于中心對稱的兩個圖形是全等的


  72定理2 關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分


  73逆定理 如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱


  74等腰梯形性質(zhì)定理 等腰梯形在同一底上的兩個角相等


  75等腰梯形的兩條對角線相等


  76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形


  77對角線相等的梯形是等腰梯形


  78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等


  79 推論1 經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰


  80 推論2 經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊


  81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半


  82 梯形中位線定理 梯形的中位線平行于兩底高中數(shù)學(xué)公式大全高中數(shù)學(xué)公式大全高中數(shù)學(xué)公式大全, 并且等于兩底和的一半 l=(a+b)÷2 s=l×h


  83 (1)比例的基本性質(zhì) 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d


  84 (2)合比性質(zhì) 如果a/b=c/d,那么(a±b)/b=(c±d)/d


  85 (3)等比性質(zhì) 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b


  86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應(yīng)線段成比例


  87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例


  88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊


  89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例


  90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似


  91 相似三角形判定定理1 兩角對應(yīng)相等,兩三角形相似(asa)


  92 直角三角形被斜邊上的優(yōu)異成的兩個直角三角形和原三角形相似


  93 判定定理2 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)


  94 判定定理3 三邊對應(yīng)成比例,兩三角形相似(sss)


  95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似


  96 性質(zhì)定理1 相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比


  97 性質(zhì)定理2 相似三角形周長的比等于相似比


  98 性質(zhì)定理3 相似三角形面積的比等于相似比的平方


  99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等


  于它的余角的正弦值


  100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值


  101圓是定點的距離等于定長的點的集合


  102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合


  103圓的外部可以看作是圓心的距離大于半徑的點的集合


  104同圓或等圓的半徑相等


  105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓


  106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線


  107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線


  108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線


  109定理 不在同一直線上的三點確定一個圓。


  110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧


  111推論1 ①平分弦(不是直徑)的直徑垂直于弦, 并且平分弦所對的兩條弧


 、谙业拇怪逼椒志經(jīng)過圓心,并且平分弦所對的兩條弧


 、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧


  112推論2 圓的兩條平行弦所夾的弧相等


  113圓是以圓心為對稱中心的中心對稱圖形


  114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等


  115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等


  116定理 一條弧所對的圓周角等于它所對的圓心角的一半


  117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等


  118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑


  119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形


  120定理 圓的內(nèi)接四邊形的對角互補高中數(shù)學(xué)公式大全,并且任何一個外角都等于它的內(nèi)對角


  121①直線l和⊙o相交 d


 、谥本l和⊙o相切 d=r


  ③直線l和⊙o相離 d>r


  122切線的判定定理 經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線


  123切線的性質(zhì)定理 圓的切線垂直于經(jīng)過切點的半徑


  124推論1 經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點


  125推論2 經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心


  126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角


  127圓的外切四邊形的兩組對邊的和相等


  128弦切角定理 弦切角等于它所夾的弧對的圓周角


  129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等


  130相交弦定理 圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的積相等


  131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的


  兩條線段的比例中項


  132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割


  線與圓交點的兩條線段長的比例中項


  133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等


  134如果兩個圓相切,那么切點一定在連心線上


  135①兩圓外離 d>r+r ②兩圓外切 d=r+r


  ③兩圓相交 r-rr)


 、軆蓤A內(nèi)切 d=r-r(r>r) ⑤兩圓內(nèi)含dr)


  136定理 相交兩圓的連心線垂直平分兩圓的公共弦


  137定理 把圓分成n(n≥3):


  ⑴依次連結(jié)各分點所得的多邊形是這個圓的內(nèi)接正n邊形


 、平(jīng)過各分點作圓的切線, 以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形


  138定理 任何正多邊形都有一個外接圓和一個內(nèi)切圓高中數(shù)學(xué)公式大全,這兩個圓是同心圓


  139正n邊形的每個內(nèi)角都等于(n-2)×180°/n


  140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形


  141正n邊形的面積sn=pnrn/2 p表示正n邊形的周長


  142正三角形面積√3a/4 a表示邊長


  143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應(yīng)為


  360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4


  144弧長公式:l=nπr/180


  145扇形面積公式:s扇形=nπr2/360=lr/2


  146內(nèi)公切線長= d-(r-r) 外公切線長= d-(r+r)


  147等腰三角形的兩個底腳相等


  148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合


  149如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等


  150三條邊都相等的三角形叫做等邊三角形

 

  相關(guān)推薦:2018-2019朝陽區(qū)高二上學(xué)期期末試題答案【匯總】

       2017-2018朝陽區(qū)高二上學(xué)期期末試題答案【匯總】

       2017-2018海淀區(qū)高二上學(xué)期期末試題答案【匯總】

       2018-2019海淀區(qū)高二上學(xué)期期末試題答案【匯總】

 

 

  愛智康高中教育頻道為大家分享的2018-2019北京朝陽區(qū)高二上學(xué)期期末診斷數(shù)學(xué)試題及答案到這里就結(jié)束啦,有關(guān)北京高二期末試題查漏補缺輔導(dǎo)的課程,請直接撥打免費咨詢電話:!學(xué)習(xí)靠的是日積月累,絕不可以眼高手低。只要大家學(xué)習(xí)認真,堅持不懈就一定能學(xué)好。

文章下長方圖-高三一輪復(fù)習(xí)史地政資料
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對1