資訊

上海

課程咨詢: 400-810-2680

預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學而思1對1 > 初中教育 > 初中數(shù)學 > 正文
內(nèi)容頁banner-1對1體驗

2018年北京初三期末復習幾何121個定理總結(jié)

2018-12-23 15:14:22  來源:網(wǎng)站整理

2018年北京初三期末復習幾何121個定理總結(jié)!幾何考來考去還是較基本的公式定理。那些看似復雜的幾何圖形,無非是故意變了形,讓孩子乍看比較蒙。但只要仔細觀察,找準解題的關(guān)鍵點,做好輔助線,一定會豁然開朗。下面小編為大家?guī)?span style="color:#f00;">2018年北京初三期末復習幾何121個定理總結(jié)。

 

 

1過兩點有且只有一條直線   

 

2兩點之間線段較短   

 

3同角或等角的補角相等   

 

4同角或等角的余角相等   

 

5過一點有且只有一條直線和已知直線垂直   

 

6直線外一點與直線上各點連接的所有線段中,垂線段較短   

 

7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行   

 

8如果兩條直線都和第三條直線平行,這兩條直線也互相平行   

 

9同位角相等,兩直線平行   

 

10內(nèi)錯角相等,兩直線平行   

 

11同旁內(nèi)角互補,兩直線平行   

 

12兩直線平行,同位角相等   

 

13兩直線平行,內(nèi)錯角相等   

 

14兩直線平行,同旁內(nèi)角互補   

 

15定理三角形兩邊的和大于第三邊   

 

16推論三角形兩邊的差小于第三邊   

 

17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180°   

 

18推論1直角三角形的兩個銳角互余   

 

19推論2三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和   

 

20推論3三角形的一個外角大于任何一個和它不相鄰的內(nèi)角   

 

21全等三角形的對應邊、對應角相等   

 

22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等   

 

23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等   

 

24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等   

 

25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等   

 

26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等   

 

27定理1在角的平分線上的點到這個角的兩邊的距離相等   

 

28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上   

 

29角的平分線是到角的兩邊距離相等的所有點的集合   

 

30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)   

 

31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊   

 

32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合   

 

33推論3等邊三角形的各角都相等,并且每一個角都等于60°   

 

34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 

 

35推論1三個角都相等的三角形是等邊三角形   

 

36推論2有一個角等于60°的等腰三角形是等邊三角形   

 

37在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半   

 

38直角三角形斜邊上的中線等于斜邊上的一半   

 

39定理線段垂直平分線上的點和這條線段兩個端點的距離相等?   

 

40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上   

 

41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合   

 

42定理1關(guān)于某條直線對稱的兩個圖形是全等形   

 

43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線   

 

44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 

 

45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱 

 

46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2   

 

47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形 

 

48定理四邊形的內(nèi)角和等于360°   

 

49四邊形的外角和等于360°   

 

50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°   

 

51推論任意多邊的外角和等于360°   

 

52平行四邊形性質(zhì)定理1平行四邊形的對角相等   

 

53平行四邊形性質(zhì)定理2平行四邊形的對邊相等   

 

54推論夾在兩條平行線間的平行線段相等   

 

55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分   

 

56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形   

 

57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形   

 

58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形   

 

59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形   

 

60矩形性質(zhì)定理1矩形的四個角都是直角   

 

61矩形性質(zhì)定理2矩形的對角線相等   

 

62矩形判定定理1有三個角是直角的四邊形是矩形   

 

63矩形判定定理2對角線相等的平行四邊形是矩形   

 

64菱形性質(zhì)定理1菱形的四條邊都相等   

 

65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角   

 

66菱形面積=對角線乘積的一半,即S=(a×b)÷2   

 

67菱形判定定理1四邊都相等的四邊形是菱形   

 

68菱形判定定理2對角線互相垂直的平行四邊形是菱形   

 

69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等   

 

70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 

 

71定理1關(guān)于中心對稱的兩個圖形是全等的   

 

72定理2關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分   

 

73逆定理如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱 

 

74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個角相等   

 

75等腰梯形的兩條對角線相等   

 

76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形   

 

77對角線相等的梯形是等腰梯形   

 

78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等 

 

79推論1經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰   

 

80推論2經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊   

 

81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半   

 

82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半L=(a+b)÷2 S=L×h 

 

83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc   

 

如果ad=bc,那么a:b=c:d   

 

84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d   

 

85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b 

 

86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例   

 

87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 

 

88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 

 

89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 

 

90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似 

 

91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)   

 

92直角三角形被斜邊上的優(yōu)異成的兩個直角三角形和原三角形相似   

 

93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)   

 

94判定定理3三邊對應成比例,兩三角形相似(SSS)   

 

95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似   

 

96性質(zhì)定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比   

 

97性質(zhì)定理2相似三角形周長的比等于相似比   

 

98性質(zhì)定理3相似三角形面積的比等于相似比的平方   

 

99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值  

 

100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值  

 

101圓是定點的距離等于定長的點的集合   

 

102圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合   

 

103圓的外部可以看作是圓心的距離大于半徑的點的集合   

 

104同圓或等圓的半徑相等   

 

105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓   

 

106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線   

 

107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線   

 

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線   

 

109定理不在同一直線上的三點確定一個圓。   

 

110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧   

 

111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧   

 

②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧   

 

③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧   

 

112推論2圓的兩條平行弦所夾的弧相等   

 

113圓是以圓心為對稱中心的中心對稱圖形   

 

114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等 

 

115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等   

 

116定理一條弧所對的圓周角等于它所對的圓心角的一半   

 

117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 

 

118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑   

 

119推論3如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形   

 

120定理圓的內(nèi)接四邊形的對角互補,并且任何一個外角都等于它的內(nèi)對角   

 

121①直線L和⊙O相交d<r   ②直線L和⊙O相切d=r  、壑本L和⊙O相離d>r

 

 

小編推薦:

  2018年北京初三語文期末相關(guān)試題

  2018年北京初三數(shù)學期末相關(guān)試題

  2018年北京初三英語期末相關(guān)試題

 

這一期的2018年北京初三期末復習幾何121個定理總結(jié)小編就介紹到這里,希望對有需要的同學提供幫助,在此小編祝大家都能取得自己想要的成績,度過一個快樂的寒假,更多試題輔導,請撥打免費咨詢電話:

文章下長方圖-初中12本名著精華版資料包
立即領(lǐng)取中小學熱門學習資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對5課程