資訊

上海

課程咨詢(xún): 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 高中教育 > 高中資訊 > 正文
內(nèi)容頁(yè)banner-1對(duì)1體驗(yàn)

北京高一人教版知識(shí)點(diǎn)數(shù)學(xué)有哪些需要掌握的呢?

2020-03-21 17:09:25  來(lái)源:網(wǎng)絡(luò)整理

    點(diǎn)擊領(lǐng)取→高中人教版全套電子教材+全科知識(shí)點(diǎn)匯總

 

北京高一人教版知識(shí)點(diǎn)數(shù)學(xué)有哪些需要掌握的呢?對(duì)于高中數(shù)學(xué)的學(xué)習(xí),大家不僅平時(shí)要多做練題目,對(duì)課本內(nèi)容也要多看,看的遍數(shù)多,反復(fù)記憶多對(duì)課本內(nèi)容就越熟,考起來(lái)速度才會(huì)快,準(zhǔn)確性才會(huì)高。題目再難,也是與書(shū)本內(nèi)容聯(lián)系的。接下來(lái)看看關(guān)于高一人教版數(shù)學(xué)的相關(guān)知識(shí)點(diǎn)吧!

  一、集合有關(guān)概念

  1. 集合的含義

  2. 集合的中元素的三個(gè)特性:

  (1) 元素的確定性,

  (2) 元素的互異性,

  (3) 元素的無(wú)序性,

  3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

  (2) 集合的表示方法:列舉法與描述法。

   注意:常用數(shù)集及其記法:

  非負(fù)整數(shù)集(即自然數(shù)集) 記作:N

  正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R

  1) 列舉法:{a,b,c……}

  2) 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{xR| x-3>2} ,{x| x-3>2}

  3) 語(yǔ)言描述法:例:{不是直角三角形的三角形}

  4) Venn圖:

  4、集合的分類(lèi):

  (1) 有限集 含有有限個(gè)元素的集合

  (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}二、集合間的基本關(guān)系1.“包含”關(guān)系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5)實(shí)例:設(shè) A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

  即:① 任何一個(gè)集合是它本身的子集。AA

 、谡孀蛹:如果AB,且A B那就說(shuō)集合A是集合B的真子集,記作A B(或B A)

 、廴绻 AB, BC ,那么 AC

 、 如果AB 同時(shí) BA 那么A=B

  3. 不含任何元素的集合叫做空集,記為Φ

  規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

   有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

  三、集合的運(yùn)算

  運(yùn)算類(lèi)型 交 集 并 集 補(bǔ) 集

  定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

  由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={x|x A,或x B}).

  設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

  記作 ,即

  CSA=

  韋

  恩

  圖

  示

  性

  質(zhì) A A=A

  A Φ=Φ

  A B=B A

  A B A

  A B B

  A A=A

  A Φ=A

  A B=B A

  A B A

  A B B

  (CuA) (CuB)

  = Cu (A B)

  (CuA) (CuB)

  = Cu(A B)

  A (CuA)=U

  A (CuA)= Φ.

  例題:

  1.下列四組對(duì)象,能構(gòu)成集合的是 ( )

  A某班所有高個(gè)子的孩子 B著名的藝術(shù)家 C一切很大的書(shū) D 倒數(shù)等于它自身的實(shí)數(shù)

  2.集合{a,b,c }的真子集共有 個(gè)

  3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},則M與N的關(guān)系是 .

  4.設(shè)集合A= ,B= ,若A B,則 的取值范圍是

  5.50名孩子做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,

  兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有 人。

  6. 用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M= .

  7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值

  二、函數(shù)的有關(guān)概念

  1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有先進(jìn)確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱(chēng)f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.

  注意:

  1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱(chēng)為函數(shù)的定義域。

  求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

  (1)分式的分母不等于零;

  (2)偶次方根的被開(kāi)方數(shù)不小于零;

  (3)對(duì)數(shù)式的真數(shù)必須大于零;

  (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

  (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

  (6)指數(shù)為零底不可以等于零,

  (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.

   相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

  (見(jiàn)課本21頁(yè)相關(guān)例2)

  2.值域 : 先考慮其定義域

  (1)觀察法

  (2)配方法

  (3)代換法

  3. 函數(shù)圖象知識(shí)歸納

  (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .

  (2) 畫(huà)法

  A、 描點(diǎn)法:

  B、 圖象變換法

  常用變換方法有三種

  1) 平移變換

  2) 伸縮變換

  3) 對(duì)稱(chēng)變換

  4.區(qū)間的概念

  (1)區(qū)間的分類(lèi):開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間

  (2)無(wú)窮區(qū)間

  (3)區(qū)間的數(shù)軸表示.

  5.映射

  一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有先進(jìn)確定的元素y與之對(duì)應(yīng),那么就稱(chēng)對(duì)應(yīng)f:A B為從集合A到集合B的一個(gè)映射。記作f:A→B

  6.分段函數(shù)

  (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

  (2)各部分的自變量的取值情況.

  (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

  補(bǔ)充:復(fù)合函數(shù)

  如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱(chēng)為f、g的復(fù)合函數(shù)。

  二.函數(shù)的性質(zhì)

  1.函數(shù)的單調(diào)性(局部性質(zhì))

  (1)增函數(shù)

  設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1

  如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱(chēng)為y=f(x)的單調(diào)減區(qū)間.

  注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

  (2) 圖象的特點(diǎn)

  如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

  (3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

  (A) 定義法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 變形(通常是因式分解和配方);

  ○4 定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));

  ○5 下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).

  (B)圖象法(從圖象上看升降)

  (C)復(fù)合函數(shù)的單調(diào)性

  復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

  注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.

  8.函數(shù)的奇偶性(整體性質(zhì))

  (1)偶函數(shù)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).

  (2).奇函數(shù)

  一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).

  (3)具有奇偶性的函數(shù)的圖象的特征

  偶函數(shù)的圖象關(guān)于y軸對(duì)稱(chēng);奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).

  利用定義判斷函數(shù)奇偶性的步驟:

  ○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱(chēng);

  ○2確定f(-x)與f(x)的關(guān)系;

  ○3作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;

  (3)利用定理,或借助函數(shù)的圖象判定 .

  9、函數(shù)的解析表達(dá)式

  (1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

  (2)求函數(shù)的解析式的主要方法有:

  1) 湊配法

  2) 待定系數(shù)法

  3) 換元法

  4) 消參法

  10.函數(shù)較大(小)值(定義見(jiàn)課本p36頁(yè))

  ○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的較大(小)值

  ○2 利用圖象求函數(shù)的較大(小)值

  ○3 利用函數(shù)單調(diào)性的判斷函數(shù)的較大(小)值:

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有較大值f(b);

  如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有較小值f(b);

  例題:

  1.求下列函數(shù)的定義域:

 、 ⑵

  2.設(shè)函數(shù) 的定義域?yàn)?,則函數(shù) 的定義域?yàn)開(kāi) _

  3.若函數(shù) 的定義域?yàn)?,則函數(shù) 的定義域是

  4.函數(shù) ,若 ,則 =

  6.已知函數(shù) ,求函數(shù) , 的解析式

  7.已知函數(shù) 滿足 ,則 = 。

  8.設(shè) 是R上的奇函數(shù),且當(dāng) 時(shí), ,則當(dāng) 時(shí) =

  在R上的解析式為

  9.求下列函數(shù)的單調(diào)區(qū)間:

  ⑴ (2)

  10.判斷函數(shù) 的單調(diào)性并證明你的結(jié)論.

  11.設(shè)函數(shù) 判斷它的奇偶性并且求證。

 

  另外學(xué)而思愛(ài)智康的老師還為大家精心準(zhǔn)備了:

  高中人教版全套電子教材+全科知識(shí)點(diǎn)匯總

點(diǎn)擊鏈接?https://jinshuju.net/f/p4vjuF或下方圖片即可領(lǐng)!

     

 

同時(shí),也向您推薦高中學(xué)業(yè)規(guī)劃課程、高考志愿填報(bào)課程

點(diǎn)擊鏈接?https://jinshuju.net/f/HXIXwC或下方圖片即可預(yù)約!

 

以上就是小編特意為大家整理的北京高一人教版知識(shí)點(diǎn)數(shù)學(xué)有哪些需要掌握的呢?的相關(guān)內(nèi)容,同學(xué)們?cè)趯W(xué)習(xí)的過(guò)程中如有疑問(wèn)或者想要獲取更多資料,歡迎撥打?qū)W而思愛(ài)智康免費(fèi)電話: 更有專(zhuān)業(yè)的老師為大家解答相關(guān)問(wèn)題!

 

小編推薦:

  為北京考生助力!高一人教版文科數(shù)學(xué)知識(shí)點(diǎn)

高一人教版歷史必修一下知識(shí)點(diǎn),北京考生來(lái)看看吧!

文章來(lái)源于網(wǎng)絡(luò)整理,如有侵權(quán),請(qǐng)聯(lián)系刪除,郵箱fanpeipei@100tal.com

文章下長(zhǎng)方圖-高三一輪復(fù)習(xí)史地政資料
你可能感興趣的文章
立即領(lǐng)取中小學(xué)熱門(mén)學(xué)習(xí)資料
*我們?cè)?4小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對(duì)1