資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 高中輔導(dǎo) > 試卷下載 > 期中試卷 > 正文
內(nèi)容頁banner-一對(duì)一體驗(yàn)

北京高一期中數(shù)學(xué)重點(diǎn)題涉及知識(shí)點(diǎn)有哪些?

2020-08-19 20:08:59  來源:網(wǎng)絡(luò)整理

  點(diǎn)擊領(lǐng)取>>>2015-2020北京各高中上學(xué)期期中試題及答案解析

 

  北京高一期中數(shù)學(xué)重點(diǎn)題涉及知識(shí)點(diǎn)有哪些?高一數(shù)學(xué)是高中數(shù)學(xué)的基礎(chǔ),從上高一開始,大家注意知識(shí)點(diǎn)的掌握是否全面,多做題也有助于鞏固掌握考點(diǎn)內(nèi)容。下面小編就給大家?guī)肀本└咭黄谥袛?shù)學(xué)重點(diǎn)題涉及知識(shí)點(diǎn)有哪些?希望對(duì)大家有所幫助哦!

  

  先進(jìn) 柱、錐、臺(tái)、球的結(jié)構(gòu)特征

  棱柱

  定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

  表示:用各頂點(diǎn)字母,如五棱柱或用對(duì)角線的端點(diǎn)字母,如五棱柱。

  幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

  棱錐

  定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

  表示:用各頂點(diǎn)字母,如五棱錐

  幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

  棱臺(tái)

  定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。

  分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

  表示:用各頂點(diǎn)字母,如五棱臺(tái)

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)

  圓柱

  定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

  圓錐

  定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。

  幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

  圓臺(tái)

  定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

  幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

  球體

  定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

  NO.2 空間幾何體的三視圖

  定義三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

  注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

  俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

  側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

  NO.3 空間幾何體的直觀圖——斜二測畫法

  斜二測畫法

  斜二測畫法特點(diǎn)

 、僭瓉砼cx軸平行的線段仍然與x平行且長度不變;

  ②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

  直線與方程

  直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

  直線的斜率

  定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。

  過兩點(diǎn)的直線的斜率公式:

  (注意下面四點(diǎn))

  (1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);

  (3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

  冪函數(shù)

  定義

  形如y=x^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

  定義域和值域

  當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則x肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則x不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)x為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在x大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在x小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

  性質(zhì)

  對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(hào)(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對(duì)于x>0,則a可以是任意實(shí)數(shù);

  排除了為0這種可能,即對(duì)于x<0和x>0的所有實(shí)數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對(duì)于x為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

  指數(shù)函數(shù)

  指數(shù)函數(shù)

  (1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

  (2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

  (3)函數(shù)圖形都是下凹的。

  (4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

  (5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于Y軸與X軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于Y軸的正半軸與X軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。

  (6)函數(shù)總是在某一個(gè)方向上無限趨向于X軸,永不相交。

  (7)函數(shù)總是通過(0,1)這點(diǎn)。

  (8)顯然指數(shù)函數(shù)無界。

  奇偶性

  定義

  一般地,對(duì)于函數(shù)f(x)

  (1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。

  (2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。

  (3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)同時(shí)成立,那么函數(shù)f(x)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

  (4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函數(shù)f(x)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

 

以上為部分資料截圖,點(diǎn)擊下方鏈接

獲取【完整版】2015-2020北京各高中上學(xué)期期中試題及答案解析

領(lǐng)取鏈接》》https://jinshuju.net/f/os1zIj

學(xué)而思愛智康個(gè)性化定制課程  咨詢請(qǐng)撥打:4000-121-121

 

  1、對(duì)于高中生來說,高中數(shù)學(xué)相對(duì)于初中數(shù)學(xué)來說,要更難更深。所以高中生在課前的時(shí)候必須要優(yōu)先預(yù)習(xí),否則很可能就會(huì)跟不上老師的節(jié)奏。另外,優(yōu)先預(yù)習(xí)還可以加深理解,從而更有針對(duì)性的學(xué)習(xí)數(shù)學(xué)。

  2、想要學(xué)好高中數(shù)學(xué),首先要準(zhǔn)確理解和牢固掌握好各種概念、性質(zhì)和公式等基本知識(shí)。另外,高中生要認(rèn)真的做課本上的例題,課本上的例題思路比較簡單,知識(shí)點(diǎn)也比較簡單,如果高中生能做好、做透課本上的例題,就說明對(duì)數(shù)學(xué)有了一定的理解能力了。

  3、高中生要有整理錯(cuò)題本的習(xí)慣。很多高中生都不知道該怎么正確使用錯(cuò)題本,整理錯(cuò)題本的時(shí)候,往往是把錯(cuò)題照抄上去。但其實(shí)錯(cuò)題本是需要有一個(gè)理解和挑選題目的過程的,真正會(huì)使用錯(cuò)題本的高中生會(huì)把知識(shí)簡化。當(dāng)然,這也是因人而異的,如果覺得還有哪里有問題,也可以整理然后記下來。

 

 

以上就是小編特意為大家整理的北京高一期中數(shù)學(xué)重點(diǎn)題涉及知識(shí)點(diǎn)有哪些的相關(guān)內(nèi)容,同學(xué)們在學(xué)習(xí)的過程中如有疑問或者想要獲取更多資料,歡迎撥打?qū)W而思愛智康免費(fèi)電話: 更有專業(yè)的老師為大家解答相關(guān)問題!

相關(guān)推薦:

高一期中歷史重點(diǎn)知識(shí)總結(jié),北京學(xué)習(xí)別錯(cuò)過

2020-2021年北京各區(qū)高一上學(xué)期期中試題及答案

 

文章來源于網(wǎng)絡(luò)整理,如有侵權(quán),請(qǐng)聯(lián)系刪除,郵箱fanpeipei@100tal.com

文章下長方圖-作文精選
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-1對(duì)1寒假