預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓
點擊領(lǐng)取>>>2015-2020北京各高中上學(xué)期期中試題及答案解析
2020北京東城區(qū)數(shù)學(xué)高一期末診斷準備要準備了,大家注意!各位高一的同學(xué)們,對高一數(shù)學(xué)課程的內(nèi)容掌握得如何?下面小編就給大家?guī)?span style="color:#f00;">2020北京東城區(qū)數(shù)學(xué)高一期末診斷準備要準備了,大家注意,希望對大家能在這次期末診斷中考出自己的水平!
想了了解更多2020北京東城區(qū)數(shù)學(xué)高一期末診斷準備要準備了,大家注意
請撥打4000-121-121咨詢
獲取【完整版】2015-2020北京各高中上學(xué)期期中試題及答案解析
領(lǐng)取鏈接》》https://jinshuju.net/f/bgu4qJ
學(xué)而思愛智康個性化定制課程 咨詢請撥打:4000-121-121
高一數(shù)學(xué)復(fù)習(xí):函數(shù)值域必修
一.觀察法
通過對函數(shù)定義域、性質(zhì)的觀察,結(jié)合函數(shù)的解析式,求得函數(shù)的值域。
例1求函數(shù)y=3+√(2-3x) 的值域。
點撥:根據(jù)算術(shù)平方根的性質(zhì),先求出√(2-3x) 的值域。
解:由算術(shù)平方根的性質(zhì),知√(2-3x)≥0,
本題通過直接觀察算術(shù)平方根的性質(zhì)而獲解,這種方法對于一類函數(shù)的值域的求法,簡捷明了,不失為一種巧法。
求函數(shù)y=[x](0≤x≤5)的值域。(答案:值域為:{0,1,2,3,4,5})
二.反函數(shù)法
當(dāng)函數(shù)的反函數(shù)存在時,則其反函數(shù)的定義域就是原函數(shù)的值域。
例2求函數(shù)y=(x+1)/(x+2)的值域。
點撥:先求出原函數(shù)的反函數(shù),再求出其定義域。
解:顯然函數(shù)y=(x+1)/(x+2)的反函數(shù)為:x=(1-2y)/(y-1),其定義域為y≠1的實數(shù),故函數(shù)y的值域為{y?y≠1,y∈R}。
求函數(shù)y=(10x+10-x)/(10x-10-x)的值域。(答案:函數(shù)的值域為{y?y<-1 y="">1})
三.配方法
當(dāng)所給函數(shù)是二次函數(shù)或可化為二次函數(shù)的復(fù)合函數(shù)時,可以利用配方法求函數(shù)值域
例3:求函數(shù)y=√(-x2+x+2)的值域。
點撥:將被開方數(shù)配方成完全平方數(shù),利用二次函數(shù)的較值求。
解:由-x2+x+2≥0,可知函數(shù)的定義域為x∈[-1,2]。此時-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]
求函數(shù)y=2x-5+√15-4x的值域.(答案:值域為{y?y≤3})
四.判別式法
若可化為關(guān)于某變量的二次方程的分式函數(shù)或無理函數(shù),可用判別式法求函數(shù)的值域。
例4求函數(shù)y=(2x2-2x+3)/(x2-x+1)的值域。
點撥:將原函數(shù)轉(zhuǎn)化為自變量的二次方程,應(yīng)用二次方程根的判別式,從而確定出原函數(shù)的值域。
解:將上式化為(y-2)x2-(y-2)x+(y-3)=0 (*)
當(dāng)y≠2時,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2
求函數(shù)y=1/(2x2-3x+1)的值域。(答案:值域為y≤-8或y>0)。
五.較值法
對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的較值,可得到函數(shù)y的值域。
例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。
點撥:根據(jù)已知條件求出自變量x的取值范圍,將目標(biāo)函數(shù)消元、配方,可求出函數(shù)的值域。
解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。
當(dāng)x=-1時,z=-5;當(dāng)x=3/2時,z=15/4。
若√x為實數(shù),則函數(shù)y=x2+3x-5的值域為 ( )
A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞)
以上就是小編特意為大家整理的2020北京東城區(qū)數(shù)學(xué)高一期末診斷準備要準備了,大家注意的相關(guān)內(nèi)容,同學(xué)們在學(xué)習(xí)的過程中如有疑問或者想要獲取更多資料,歡迎撥打?qū)W而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關(guān)問題!
想了了解更多2020北京東城區(qū)數(shù)學(xué)高一期末診斷準備要準備了,大家注意
請撥打4000-121-121咨詢
相關(guān)推薦:
2020年北京市高一期末診斷地理準備不可少,同學(xué)們都在看
文章來源于網(wǎng)絡(luò)整理,如有侵權(quán),請聯(lián)系刪除,郵箱fanpeipei@100tal.com
大家都在看
限時免費領(lǐng)取
學(xué)習(xí)相關(guān)