預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
初中三角函數(shù) 切線!同學們?nèi)绾螌W好數(shù)學,是很多孩子苦惱的問題,在龐大的知識量下,如何將這些零碎的知識點串聯(lián)在一起,然后提高整體把握的學習效率,這就需要同學們擁有足夠的耐心和毅力了。下面,小編為大家?guī)?/span>初中三角函數(shù) 切線。
1、一次函數(shù)的定義
一般地,形如(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b=0時,一次函數(shù)y=kx,又叫做正比例函數(shù)。
⑴一次函數(shù)的解析式的形式是,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式.
⑵當b=0,k≠0時,y=kx仍是一次函數(shù).
⑶當k=0,b≠0時,它不是一次函數(shù).
⑷正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù).
2、正比例函數(shù)及性質
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).
注:
正比例函數(shù)一般形式 y=kx (k不為零)
① k不為零 ② x指數(shù)為1 ③ b取零
當k>0時,直線y=kx經(jīng)過一、三象限,從左向右上升,即隨x的增大y也增大;
當k<0時,直線y=kx經(jīng)過二、四象限,從左向右下降,即隨x增大y反而減。
(1) 解析式:y=kx(k是常數(shù),k≠0)
(2) 必過點:(0,0)、(1,k)
(3) 走向:k>0時,圖像經(jīng)過一、三象限;k<0時,圖像經(jīng)過
二、四象限
(4) 增減性:k>0,y隨x的增大而增大;k<0,y隨x增大而減小
(5) 傾斜度:|k|越大,越接近y軸;|k|越小,越接近x軸
以上是部分資料,點擊下方鏈接領取完整版
點擊領取>> 初中函數(shù)知識點講解及練習題匯總 預約咨詢請撥打:400-810-2680
5、函數(shù)的解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做函數(shù)的解析式
6、函數(shù)的圖像
一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象.
7、描點法畫函數(shù)圖形的一般步驟
先進步:列表(表中給出一些自變量的值及其對應的函數(shù)值);
第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點);
第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。
8、函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的對應規(guī)律。
解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。
初中三角函數(shù) 切線就給大家分享到這里,另外學而思學科老師還給大家整理了一份《初中函數(shù)知識點講解及練習題匯總 》。
部分資料截圖如下:
點擊鏈接領取完整版資料:https://jinshuju.net/f/tisNv7
相關推薦:
文章來源于網(wǎng)絡整理,如有侵權,請聯(lián)系刪除,郵箱fanpeipei@100tal.com