掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門(mén)課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿(mǎn)足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
請(qǐng)選擇城市
請(qǐng)選擇意向校區(qū)
請(qǐng)選擇年級(jí)
請(qǐng)選擇科目
基本不等式及應(yīng)用是高中階段一個(gè)重要的知識(shí)點(diǎn);其方法靈活,應(yīng)用廣范。在學(xué)習(xí)過(guò)程中要求孩子對(duì)公式的條件、形式、結(jié)論等要熟練掌握,才能靈活運(yùn)用。
一、基本不等式:
1.a,b∈R,a2+b2≥2ab,當(dāng)且僅當(dāng)a=b等號(hào)成立,
2.a,b∈R+,a+b≥2-,當(dāng)且僅當(dāng)a=b等號(hào)成立。
二、問(wèn)題1:設(shè)ab﹤0,則:-+-的取值范圍是( )
(A)(-∞ -2 ] (B)(-∞ 2] (C)[-2 +∞) (D)[2 +∞)
解題辨析:
常見(jiàn)錯(cuò)誤解法:因?yàn)?與-的積為定值,其和有較小值,
即-+-≥2所以選擇答案(D)。此解法是錯(cuò)的,是因?yàn)?﹤0
-﹤0并不滿(mǎn)足不等式:a+b≥2-中字母的條件;
正確方法是:因ab﹤0,所以(--)>0,(--)>0
(--)+(--)≥2,即-+-≤-2,正確答案是(A)
問(wèn)題2:已知x是正實(shí)數(shù),求函數(shù)y=x2+-的較小值?
解題辨析:
常見(jiàn)錯(cuò)誤解法:因x是正實(shí)數(shù),y=x2+-≥2-,所以y=x2+-的較小值是2-,當(dāng)且僅當(dāng)x2=-,即x=-時(shí),等號(hào)成立;此解法錯(cuò)誤的原因是x2與-的積
2-并不是定值。
正確結(jié)論:對(duì)于兩個(gè)正數(shù)a與b,
當(dāng)和為定值,當(dāng)且僅當(dāng)a=b時(shí),其積有較大值;
當(dāng)積為定值,當(dāng)且僅當(dāng)a=b時(shí),其和有較小值。
正確方法是:因x是正實(shí)數(shù),y=x2+-=x2+-+-
≥3·■=3,
當(dāng)且僅當(dāng):x2=-等號(hào)成立,即x=1時(shí),y=x2+-的較小值是3
問(wèn)題3:已知x,y都是正實(shí)數(shù),且x+4y=1,求:-+-的較小值?
解題辨析:
常見(jiàn)錯(cuò)誤解法:因?yàn)閤,y都是正實(shí)數(shù)1=x+4y≥2-
即1≥4->0,-+-≥
2->0,兩式相乘得-+-≥8
所以-+-的較小值是8,此解法錯(cuò)誤的原因是不等式x+4y≥2-取等號(hào)的條件是x=4y,而不等式-+-≥2-取等號(hào)的條件是x=y,而這兩個(gè)條件不可能同時(shí)成立,因此-+-≥8中的等號(hào)不成立。
正確方法是:x,y都是正實(shí)數(shù),且x+4y=1,所以-+-=(-+-)·(x+4y)=1+4+(-+-)≥5+
2-=9,當(dāng)且僅當(dāng)-=-等號(hào)成立,
即當(dāng)且僅當(dāng)x=-,y=-時(shí),-+-取得較小值是9
問(wèn)題4:已知x,y,m,n∈R,且x2+y2=2,m2+n2=4,求:xm+yn的較大值?
解題辨析:
常見(jiàn)錯(cuò)誤解法:
xm+yn≤(x2+m2)/2+(y2+n2)/2=(x2+y2+m2+n2)/2=3
即:xm+yn的較大值為3
此解法錯(cuò)誤的原因是當(dāng)xm+yn取得較大值3時(shí),x=m,y=n要同時(shí)成立,即有x2+y2=m2+n2,而這是不可能的。
正確解法:因?yàn)閤2+y2=2,m2+n2=4,兩式相乘
8=x2m2+n2y2+x2n2+y2m2≥x2m2+n2y2+2xymn
8≥(xm+ny)2∴|xm+ny|≤2-
即當(dāng)且僅當(dāng)xn=ym時(shí),xm+yn取較大值為2-
總之,基本不等式解決問(wèn)題并不是通用的。學(xué)習(xí)過(guò)程中,要深刻理解基本不等式的內(nèi)在實(shí)質(zhì),搞清其條件、公式、結(jié)論之間的辯證關(guān)系是關(guān)鍵。特別對(duì)于第二個(gè)基本不等式,我們常說(shuō)“一正、二定、三等號(hào)”,其意義就在于此。
訓(xùn)練題
一、填空題:
1.已知x,y都是正實(shí)數(shù),且-+-=1,則x+y較小值是_______,
當(dāng)且僅當(dāng)x=_______,y=_______,
2.已知:abc均為實(shí)數(shù),且a2+b2+c2=1,則ab+bc+ca的較大值是________
較小值是_________。
3.已知:a,b都是正實(shí)數(shù),且a+b=1,則(a+-)2+(b+-)2的較小值是__________。
二、選擇題:
1.已知:a,b都是正實(shí)數(shù),且a+b=1,則-+-的較大值是( )
(A)-(B)-(C)2-(D)3
2.已知實(shí)數(shù)a,b,c滿(mǎn)足:a+b+c=5且a2+b2+c2=11,則實(shí)數(shù)c的范圍是( )
(A)R(B)[- 2](C)(- 3)(D)[- 3]
三、解答題:
1.已知矩形的面積與其周長(zhǎng)相等,求其面積的較小值?
2.⑴比較大。憨S23_____㏒34,㏒56______㏒67
、聘鶕(jù)上述結(jié)論作出推廣,試寫(xiě)出一個(gè)有關(guān)于自然數(shù)n的不等式,并證明之。
答案:
一、 填空題:
1. x+y較小值是9, 當(dāng)且僅當(dāng) x=6,y=3。
2. ab+bc+ca的較大值是1 , 較小值是--。
3.(a+-)2+(b+-)2的較小值是- , 二、 選擇題:
1.(C), 2.(D)
三、 解答題:
1.16
2.⑴ ㏒23>㏒34 , ㏒56>㏒67
、 ㏒n(n+1)>㏒(n+1)(n+2), 只要證明: ㏒(n+1)n·㏒(n+1)(n+2)﹤1即可。
大家都在看
限時(shí)免費(fèi)領(lǐng)取