資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對1 > 北京高考 > 高考數(shù)學(xué) > 正文
內(nèi)容頁banner-兩小時(shí)1對1體驗(yàn)

08高考數(shù)學(xué)復(fù)習(xí):用向量方法解決軌跡方程

2008-02-03 09:44:03  來源:城市快報(bào) 文章作者:李艷杰

  二、運(yùn)用兩非零向量共線的充要條件求軌跡方程。

  例1:已知定點(diǎn)A(2,0),點(diǎn)P在曲線x2+y2=1(x≠1)上運(yùn)動(dòng),∠AOP的平分線交PA于Q,其中O為原點(diǎn),求點(diǎn)Q的軌跡方程。

  解: 設(shè)Q(x,y),P(x1,y1)

  -=(x-2,y)

  -=( x1-x,y1-y)

  又∵-=-=-

  ∴ -=2-

  即:(x-2,y)=2(x1-x,y1-y)

  -

  解得:-

  代入x12+y12=1(x≠1)有:

  -(3x-2)2+-y2=1(x≠-)

  即所求軌跡方程為:

  (x--)2+y2=-(x≠-)

  【點(diǎn)撥】用該方法解此類問題簡單明了,若將Q視為線段AP的定比分點(diǎn),運(yùn)用定比分點(diǎn)公式解本題,則過程既繁瑣又容易出錯(cuò)。

  例2:設(shè)過點(diǎn)P(x,y)的直線分別與x軸的正半軸和y軸的正半軸交于A、B兩點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于y軸對稱,O為坐標(biāo)原點(diǎn),若-=2-,且-·■=1,求P點(diǎn)的軌跡方程。

  解:-=2-

  ∴P分有向線段-所成的比為2

  由P(x,y)可得B(0,3y),A(-x,0)

  ∴- =(--x,3y)

  ∵Q與P關(guān)于y軸對稱, ∴Q(-x,y),-且 =(-x,y)

  ∴由-·■=1可得-x2+3y2=1(x>0,y>0)

  即所求點(diǎn)P的軌跡方程為-x2+3y2=1(x>0,y>0)

  【點(diǎn)撥】求動(dòng)點(diǎn)軌跡方程時(shí)應(yīng)注意它的完備性與純粹性。化簡過程破壞了方程的同解性,要注意補(bǔ)上遺漏的點(diǎn)或者挖去多余的點(diǎn)。

  三、運(yùn)用兩非零向量垂直的充要條件是求軌跡方程。

  例1:如圖,過定點(diǎn)A(a,b)任意作相互垂直的直線l1與l2,且l1與x軸相交于M點(diǎn),l2與y軸相交于N點(diǎn),求線段MN中點(diǎn)P的軌跡方程。

  解:設(shè)P(x,y),則M(2x,0),N(0,2y)

  -=(2x-a ,-b)

  -=(-a,2y-b)

  由-⊥-知-·■=0

  ∴(2x-a)(-a)+(-b)(2y-b)=0

  即所求點(diǎn)P的軌跡方程為2ax+2by=a2+b2

  【點(diǎn)撥】用勾股定理解本題,運(yùn)算繁瑣,若用斜率解本題,又必須分類討論,用向量的方法避免了上述兩種方法的缺陷,使解題優(yōu)化。

  例2:過拋物線y2=8x的焦點(diǎn)F的直線交拋物線于A,B兩點(diǎn),過原點(diǎn)O作OM⊥AB,垂足M,求點(diǎn)M的軌跡方程。

  解:設(shè)M(x,y), OM⊥AB,F(xiàn)(2,0)

  ∵-·■=0且-=(x,y),-=(2-x,-y)

  ∴x(2-x)-y2=0,即:x2+y2-2x=0

  ∴點(diǎn)M的軌跡方程為x2+y2-2x=0

文章下長方圖-高三一輪復(fù)習(xí)史地政資料
你可能感興趣的文章
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對1