掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門(mén)課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
智康1對(duì)1為您整理了2016年高考數(shù)學(xué)專項(xiàng)練題目,更多高考相關(guān)信息請(qǐng)?jiān)L問(wèn)智康1對(duì)1高考欄目。
1.已知拋物線x2=ay的焦點(diǎn)恰好為雙曲線y2-x2=2的上焦點(diǎn),則a=( )
A.1 B.4 C.8 D.16
2.(2014遼寧,文8)已知點(diǎn)A(-2,3)在拋物線C:y2=2px的準(zhǔn)線上,記C的焦點(diǎn)為F,則直線AF的斜率為( )
A.- B.-1 C.- D.-
3.拋物線y=-4x2上的一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的縱坐標(biāo)是( )
A.- B.- C. D.
4.拋物線C的頂點(diǎn)為原點(diǎn),焦點(diǎn)在x軸上,直線x-y=0與拋物線C交于A,B兩點(diǎn),若P(1,1)為線段AB的中點(diǎn),則拋物線C的方程為( )
A.y=2x2 B.y2=2x C.x2=2y D.y2=-2x
5.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線與x軸的交點(diǎn)為K,點(diǎn)A在C上,且|AK|=|AF|,則AFK的面積為( )
A.4 B.8 C.16 D.32
6.以拋物線x2=16y的焦點(diǎn)為圓心,且與拋物線的準(zhǔn)線相切的圓的方程為 .
7.已知拋物線x2=2py(p為常數(shù),p≠0)上不同兩點(diǎn)A,B的橫坐標(biāo)恰好是關(guān)于x的方程x2+6x+4q=0(q為常數(shù))的兩個(gè)根,則直線AB的方程為 .
8.已知F是拋物線C:y2=4x的焦點(diǎn),A,B是C上的兩個(gè)點(diǎn),線段AB的中點(diǎn)為M(2,2),求ABF的面積.
9.已知一條曲線C在y軸右邊,C上每一點(diǎn)到點(diǎn)F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在正數(shù)m,對(duì)于過(guò)點(diǎn)M(m,0),且與曲線C有兩個(gè)交點(diǎn)A,B的任一直線,都有<0?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
10.已知拋物線y2=2px,以過(guò)焦點(diǎn)的弦為直徑的圓與拋物線準(zhǔn)線的位置關(guān)系是( )
A.相離 B.相交 C.相切 D.不確定
11.設(shè)x1,x2R,常數(shù)a>0,定義運(yùn)算“*”,x1*x2=(x1+x2)2-(x1-x2)2,若x≥0,則動(dòng)點(diǎn)P(x,)的軌跡是( )
A.圓 B.橢圓的一部分
C.雙曲線的一部分 D.拋物線的一部分
12.已知拋物線C:y2=8x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),Q是直線PF與C的一個(gè)交點(diǎn).若=4,則|QF|=( )
A. B.3 C. D.2
13.過(guò)拋物線x2=2py(p>0)的焦點(diǎn)作斜率為1的直線與該拋物線交于A,B兩點(diǎn),A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12,則p= .
14.(2014大綱全國(guó),文22)已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|=|PQ|.
(1)求C的方程;
(2)過(guò)F的直線l與C相交于A,B兩點(diǎn),若AB的垂直平分線l'與C相交于M,N兩點(diǎn),且A,M,B,N四點(diǎn)在同一圓上,求l的方程.
15.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,A為C上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)A的直線l交C于另一點(diǎn)B,交x軸的正半軸于點(diǎn)D,且有|FA|=|FD|.當(dāng)點(diǎn)A的橫坐標(biāo)為3時(shí),ADF為正三角形.
(1)求C的方程;
(2)若直線l1l,且l1和C有且只有一個(gè)公共點(diǎn)E,
證明直線AE過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
ABE的面積是否存在較小值?若存在,請(qǐng)求出較小值;若不存在,請(qǐng)說(shuō)明理由.
參考答案及解析:
1.C 解析:根據(jù)拋物線方程可得其焦點(diǎn)坐標(biāo)為,雙曲線的上焦點(diǎn)為(0,2),依題意則有=2,解得a=8.
2.C 解析:由已知,得準(zhǔn)線方程為x=-2,
F的坐標(biāo)為(2,0).
又A(-2,3),直線AF的斜率為k==-.故選C.
3.B 解析:拋物線方程可化為x2=-,其準(zhǔn)線方程為y=.
設(shè)M(x0,y0),則由拋物線的定義,可知-y0=1y0=-.
4.B 解析:設(shè)A(x1,y1),B(x2,y2),拋物線方程為y2=2px,
則兩式相減可得2p=×(y1+y2)=kAB×2=2,
即可得p=1,故拋物線C的方程為y2=2x.
5.B 解析:拋物線C:y2=8x的焦點(diǎn)為F(2,0),準(zhǔn)線為x=-2,K(-2,0).
設(shè)A(x0,y0),過(guò)點(diǎn)A向準(zhǔn)線作垂線AB垂足為B,則B(-2,y0).
|AK|=|AF|,
又|AF|=|AB|=x0-(-2)=x0+2,
由|BK|2=|AK|2-|AB|2,
得=(x0+2)2,即8x0=(x0+2)2,
解得A(2,±4).
故AFK的面積為|KF|·|y0|
=×4×4=8.
6.x2+(y-4)2=64 解析:拋物線的焦點(diǎn)為F(0,4),準(zhǔn)線為y=-4,
則圓心為(0,4),半徑r=8.
故圓的方程為x2+(y-4)2=64.
7.3x+py+2q=0 解析:由題意知,直線AB與x軸不垂直.
設(shè)直線AB的方程為y=kx+m,與拋物線方程聯(lián)立,得x2-2pkx-2pm=0,
此方程與x2+6x+4q=0同解,
則解得
故直線AB的方程為y=-x-,
即3x+py+2q=0.
8.解:由M(2,2)知,線段AB所在的直線的斜率存在,
設(shè)過(guò)點(diǎn)M的直線方程為y-2=k(x-2)(k≠0).
由消去y,
得k2x2+(-4k2+4k-4)x+4(k-1)2=0.
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=,
x1x2=.
由題意知=2,
則=4,解得k=1,
于是直線方程為y=x,x1x2=0.
因?yàn)閨AB|=|x1-x2|=4,
又焦點(diǎn)F(1,0)到直線y=x的距離d=,所以ABF的面積是×4=2.
9.解:(1)設(shè)P(x,y)是曲線C上任意一點(diǎn),
則點(diǎn)P(x,y)滿足-x=1(x>0),
化簡(jiǎn)得y2=4x(x>0).
(2)設(shè)過(guò)點(diǎn)M(m,0)(m>0)的直線l與曲線C的交點(diǎn)為A(x1,y1),B(x2,y2).
設(shè)l的方程為x=ty+m.
由得y2-4ty-4m=0,
Δ=16(t2+m)>0,
于是
因?yàn)?(x1-1,y1),
=(x2-1,y2),
所以=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+y1y2+1.
又<0,
所以x1x2-(x1+x2)+y1y2+1<0,③
因?yàn)閤=,所以不等式可變形為
+y1y2-+1<0,
即+y1y2-[(y1+y2)2-2y1y2]+1<0.
將代入整理得m2-6m+1<4t2.
因?yàn)閷?duì)任意實(shí)數(shù)t,4t2的較小值為0
所以不等式對(duì)于一切t成立等價(jià)于m2-6m+1<0,
即3-20),則FD的中點(diǎn)為.
因?yàn)閨FA|=|FD|,
由拋物線的定義知3+,
解得t=3+p或t=-3(舍去).
由=3,解得p=2.
所以拋物線C的方程為y2=4x.
(2)由(1)知F(1,0).
設(shè)A(x0,y0)(x0y0≠0),D(xD,0)(xD>0),
因?yàn)閨FA|=|FD|,
則|xD-1|=x0+1.
由xD>0得xD=x0+2,
故D(x0+2,0).
故直線AB的斜率kAB=-.
因?yàn)橹本l1和直線AB平行,設(shè)直線l1的方程為y=-x+b,
代入拋物線方程得y2+y-=0,
由題意Δ==0,
得b=-.
設(shè)E(xE,yE),
則yE=-,xE=.
當(dāng)≠4時(shí),kAE==-,
可得直線AE的方程為y-y0=(x-x0),
由=4x0,整理可得y=(x-1),
直線AE恒過(guò)點(diǎn)F(1,0).
當(dāng)=4時(shí),直線AE的方程為x=1,過(guò)點(diǎn)F(1,0).
所以直線AE過(guò)定點(diǎn)F(1,0).
由知直線AE過(guò)焦點(diǎn)F(1,0),
所以|AE|=|AF|+|FE|=(x0+1)
+=x0++2.
設(shè)直線AE的方程為x=my+1,
因?yàn)辄c(diǎn)A(x0,y0)在直線AE上,
故m=.
設(shè)B(x1,y1),
直線AB的方程為y-y0=-(x-x0),由于y0≠0,
可得x=-y+2+x0,
代入拋物線方程得y2+y-8-4x0=0.
所以y0+y1=-,
可求得y1=-y0-,
x1=+x0+4.
所以點(diǎn)B到直線AE的距離為
d=
==4.
則ABE的面積S=×4≥16,
當(dāng)且僅當(dāng)=x0,即x0=1時(shí)等號(hào)成立.
所以ABE的面積的較小值為16.
大家都在看