掃描注冊有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
迎戰(zhàn)診斷,我們需要自信,我們要一如既往地堅(jiān)持,讓學(xué)習(xí)始終充滿動(dòng)力,富有效率,直到較后征服診斷。下面是為大家收集的小學(xué)數(shù)學(xué)應(yīng)用題類型和應(yīng)對策略,供大家參考。
1 簡單應(yīng)用題
(1) 簡單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運(yùn)算解答的應(yīng)用題,通常叫做簡單應(yīng)用題。
(2) 解題步驟:
a 審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問題。讀題時(shí),不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。
b選擇算法和列式:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運(yùn)算的含義,分析數(shù)量關(guān)系,確定算法,進(jìn)行解答并標(biāo)明正確的單位名稱。
C檢驗(yàn):就是根據(jù)應(yīng)用題的條件和問題進(jìn)行檢查看所列算式和過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯(cuò)誤,馬上改正。
2 復(fù)合應(yīng)用題
(1)有兩個(gè)或兩個(gè)以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運(yùn)算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。
(2)含有三個(gè)已知條件的兩步的應(yīng)用題。
求比兩個(gè)數(shù)的和多(少)幾個(gè)數(shù)的應(yīng)用題。
比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。
(3)含有兩個(gè)已知條件的兩步的應(yīng)用題。
已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個(gè)數(shù),求兩個(gè)數(shù)的和(或差)。
已知兩數(shù)之和與其中一個(gè)數(shù),求兩個(gè)數(shù)相差多少(或倍數(shù)關(guān)系)。
(4)解答連乘連除應(yīng)用題。
(5)解答三步的應(yīng)用題。
(6)解答小數(shù)的應(yīng)用題:小數(shù)的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。
d答案:根據(jù)的結(jié)果,先口答,逐步過渡到筆答。
( 3 ) 解答加法應(yīng)用題:
a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。
b求比一個(gè)數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。
(4 ) 解答減法應(yīng)用題:
a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。
-b求兩個(gè)數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。
c求比一個(gè)數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。
(5 ) 解答乘法應(yīng)用題:
a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個(gè)數(shù),求總數(shù)。
b求一個(gè)數(shù)的幾倍是多少的應(yīng)用題:已知一個(gè)數(shù)是多少,另一個(gè)數(shù)是它的幾倍,求另一個(gè)數(shù)是多少。
( 6) 解答除法應(yīng)用題:
a把一個(gè)數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個(gè)數(shù)和把這個(gè)數(shù)平均分成幾份的,求每一份是多少。
b求一個(gè)數(shù)里包含幾個(gè)另一個(gè)數(shù)的應(yīng)用題:已知一個(gè)數(shù)和每份是多少,求可以分成幾份。
C 求一個(gè)數(shù)是另一個(gè)數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。
d已知一個(gè)數(shù)的幾倍是多少,求這個(gè)數(shù)的應(yīng)用題。
(7)常見的數(shù)量關(guān)系:
總價(jià)= 單價(jià)×數(shù)量
路程= 速度×時(shí)間
工作總量=工作時(shí)間×工效
總產(chǎn)量=單產(chǎn)量×數(shù)量
3典型應(yīng)用題
具有獨(dú)特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
(1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。
算術(shù)平均數(shù):已知幾個(gè)不相等的同類量和與之相對應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個(gè)數(shù)=算術(shù)平均數(shù)。
加權(quán)平均數(shù):已知兩個(gè)以上若干份的平均數(shù),求總平均數(shù)是多少。
數(shù)量關(guān)系式 (部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。
差額平均數(shù):是把各個(gè)大于或小于標(biāo)準(zhǔn)數(shù)的部分之和被總份數(shù)均分,求的是標(biāo)準(zhǔn)數(shù)與各數(shù)相差之和的平均數(shù)。
數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù) 較大數(shù)與各數(shù)之差的和÷總份數(shù)=較大數(shù)應(yīng)給數(shù) 較大數(shù)與個(gè)數(shù)之差的和÷總份數(shù)=較小數(shù)應(yīng)得數(shù)。
例:一輛汽車以每小時(shí) 100 千米 的速度從甲地開往乙地,又以每小時(shí) 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時(shí)間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時(shí)間是 ,汽車共行的時(shí)間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
(2) 歸一問題:已知相互關(guān)聯(lián)的兩個(gè)量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運(yùn)算就能求出“單一量”的歸一問題。又稱“單歸一。”
兩次歸一問題,用兩步運(yùn)算就能求出“單一量”的歸一問題。又稱“雙歸一。”
正歸一問題:用等分除法求出“單一量”之后,再用乘法結(jié)果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法結(jié)果的歸一問題。
解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標(biāo)準(zhǔn),根據(jù)題目的要求算出結(jié)果。
大家都在看
限時(shí)免費(fèi)領(lǐng)取
學(xué)習(xí)相關(guān)