資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓

獲取驗(yàn)證碼

請(qǐng)選擇城市

  • 上海

請(qǐng)選擇意向校區(qū)

請(qǐng)選擇年級(jí)

請(qǐng)選擇科目

立即體驗(yàn)
當(dāng)前位置:北京學(xué)而思1對(duì)1 > 北京高考 > 高考數(shù)學(xué) > 正文
內(nèi)容頁(yè)banner-兩小時(shí)1對(duì)1體驗(yàn)

 高考數(shù)學(xué)函數(shù)值域的求法值法

2016-12-23 01:10:33  來(lái)源:愛(ài)智康高中

  高考數(shù)學(xué)函數(shù)值域的求法值法,由智康網(wǎng)高中數(shù)學(xué)頻道精心整理,歡迎老師同學(xué)們進(jìn)行高中數(shù)學(xué)學(xué)習(xí)準(zhǔn)備使用。如果對(duì)你有幫助,請(qǐng)繼續(xù)支持智康網(wǎng)高中數(shù)學(xué)頻道,并提出您的寶貴建議,小編會(huì)盡較大的努力給大家收集較好較實(shí)用的高考數(shù)學(xué)復(fù)習(xí)準(zhǔn)備信息!

      對(duì)于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內(nèi)的較值,并與邊界值f(a).f(b)作比較,求出函數(shù)的值,可得到函數(shù)y的值域。
  
  例5已知(2x2-x-3)/(3x2+x+1)≤0,且滿足x+y=1,求函數(shù)z=xy+3x的值域。
  
  點(diǎn)撥:根據(jù)已知條件求出自變量x的取值范圍,將目標(biāo)函數(shù)消元、配方,可求出函數(shù)的值域。
  
  解:∵3x2+x+1>0,上述分式不等式與不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,將y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),
  
  ∴z=-(x-2)2+4且x∈[-1,3/2],函數(shù)z在區(qū)間[-1,3/2]上連續(xù),故只需比較邊界的大小。
  
  當(dāng)x=-1時(shí),z=-5;當(dāng)x=3/2時(shí),z=15/4。
  
  ∴函數(shù)z的值域?yàn)閧z∣-5≤z≤15/4}。
  
  點(diǎn)評(píng):本題是將函數(shù)的值域問(wèn)題轉(zhuǎn)化為函數(shù)的值。對(duì)開(kāi)區(qū)間,若存在值,也可通過(guò)求出值而獲得函數(shù)的值域。
  
  訓(xùn)練:若√x為實(shí)數(shù),則函數(shù)y=x2+3x-5的值域?yàn)?)
  
  A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)
  
  (答案:D)。

 高考數(shù)學(xué)函數(shù)值域的求法值法為大家介紹好了,如果同學(xué)們?cè)诟咧袑W(xué)習(xí)中還有什么問(wèn)題的話,請(qǐng)直接撥打智康網(wǎng)高中頻道免費(fèi)咨詢電話:4000-121-121,會(huì)有專業(yè)的高中權(quán)威老師為您解答!

文章下長(zhǎng)方圖-高三一輪復(fù)習(xí)史地政資料
你可能感興趣的文章
立即領(lǐng)取中小學(xué)熱門(mén)學(xué)習(xí)資料
*我們?cè)?4小時(shí)內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對(duì)1