掃描注冊(cè)有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
高考數(shù)學(xué)函數(shù)值域的求法比例法,由智康網(wǎng)高中數(shù)學(xué)頻道精心整理,歡迎老師同學(xué)們進(jìn)行高中數(shù)學(xué)學(xué)習(xí)準(zhǔn)備使用。如果對(duì)你有幫助,請(qǐng)繼續(xù)支持智康網(wǎng)高中數(shù)學(xué)頻道,并提出您的寶貴建議,小編會(huì)盡較大的努力給大家收集較好較實(shí)用的高考數(shù)學(xué)復(fù)習(xí)準(zhǔn)備信息!
對(duì)于一類含條件的函數(shù)的值域的求法,可將條件轉(zhuǎn)化為比例式,代入目標(biāo)函數(shù),進(jìn)而求出原函數(shù)的值域。
例4已知x,y∈R,且3x-4y-5=0,求函數(shù)z=x2+y2的值域。
點(diǎn)撥:將條件方程3x-4y-5=0轉(zhuǎn)化為比例式,設(shè)置參數(shù),代入原函數(shù)。
解:由3x-4y-5=0變形得,(x3)/4=(y-1)/3=k(k為參數(shù))
∴x=3+4k,y=1+3k,
∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。
當(dāng)k=-3/5時(shí),x=3/5,y=-4/5時(shí),zmin=1。
函數(shù)的值域?yàn)閧z|z≥1}.
點(diǎn)評(píng):本題是多元函數(shù)關(guān)系,一般含有約束條件,將條件轉(zhuǎn)化為比例式,通過(guò)設(shè)參數(shù),可將原函數(shù)轉(zhuǎn)化為單函數(shù)的形式,這種解題方法體現(xiàn)諸多思想方法,具有一定的創(chuàng)新意識(shí)。
訓(xùn)練:已知x,y∈R,且滿足4x-y=0,求函數(shù)f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})
高考數(shù)學(xué)函數(shù)值域的求法比例法為大家介紹好了,如果同學(xué)們?cè)诟咧袑W(xué)習(xí)中還有什么問(wèn)題的話,請(qǐng)直接撥打智康網(wǎng)高中頻道免費(fèi)咨詢電話:4000-121-121,會(huì)有專業(yè)的高中權(quán)威老師為您解答!
大家都在看
限時(shí)免費(fèi)領(lǐng)取