資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學(xué)而思1對1 > 高中教育 > 高中數(shù)學(xué) > 正文
內(nèi)容頁banner-1對1體驗

三角函數(shù)的誘導(dǎo)公式

2018-07-20 17:13:04  來源:網(wǎng)絡(luò)整理

  三角函數(shù)的誘導(dǎo)公式!三角函數(shù)在各象限的符號口訣是一全正,二正弦,三正切,四余弦。三角函數(shù)誘導(dǎo)公式口訣函數(shù)名不變,符號看象限;奇變偶不變,符號看象限。下面是具體的三角函數(shù)的誘導(dǎo)公式,大家要牢記。

  常用的誘導(dǎo)公式有以下幾組:

  三角函數(shù)誘導(dǎo)公式一:

  任意角α與-α的三角函數(shù)值之間的關(guān)系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  三角函數(shù)誘導(dǎo)公式二:

  設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  三角函數(shù)誘導(dǎo)公式三:

  利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  三角函數(shù)誘導(dǎo)公式四:

  設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  三角函數(shù)誘導(dǎo)公式五:

  利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  三角函數(shù)誘導(dǎo)公式六:

  π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  sin(3π/2+α)=-cosα

  cos(3π/2+α)=sinα

  tan(3π/2+α)=-cotα

  cot(3π/2+α)=-tanα

  sin(3π/2-α)=-cosα

  cos(3π/2-α)=-sinα

  tan(3π/2-α)=cotα

  cot(3π/2-α)=tanα

  (以上k∈Z)

  注意:在做題時,將a看成銳角來做會比較好做。

  規(guī)律總結(jié)

  上面這些誘導(dǎo)公式可以概括為:

  對于π/2*k±α(k∈Z)的三角函數(shù)值,

 、佼攌是偶數(shù)時,得到α的同名函數(shù)值,即函數(shù)名不改變;

 、诋攌是奇數(shù)時,得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.

  (奇變偶不變)

  然后在前面加上把α看成銳角時原函數(shù)值的符號。

  上述的記憶口訣是:

  奇變偶不變,符號看象限。

  公式右邊的符號為把α視為銳角時,角k·360°+α(k∈Z),-α、180°±α,360°-α

  所在象限的原三角函數(shù)值的符號可記憶

  水平誘導(dǎo)名不變;符號看象限。

  各種三角函數(shù)在四個象限的符號如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.

  這十二字口訣的意思就是說:

  先進象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”;

  第二象限內(nèi)只有正弦是“+”,其余全部是“-”;

  第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;

  第四象限內(nèi)只有余弦是“+”,其余全部是“-”.

  上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦

  同角三角函數(shù)的基本關(guān)系式

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系:

  sin2(α)+cos2(α)=1

  1+tan2(α)=sec2(α)

  1+cot2(α)=csc2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  六角形記憶法:

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  (1)倒數(shù)關(guān)系:對角線上兩個函數(shù)互為倒數(shù);

  (2)商數(shù)關(guān)系:六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。

  (主要是兩條虛線兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

  (3)平方關(guān)系:在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

  兩角和差公式

  兩角和與差的三角函數(shù)公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  二倍角公式

  二倍角的正弦、余弦和正切公式(升冪縮角公式)

  sin2α=2sinαcosα

  cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

  tan2α=2tanα/[1-tan2(α)]

  半角公式

  半角的正弦、余弦和正切公式(降冪擴角公式)

  sin2(α/2)=(1-cosα)/2

  cos2(α/2)=(1+cosα)/2

  tan2(α/2)=(1-cosα)/(1+cosα)

  另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

  通用公式

  sinα=2tan(α/2)/[1+tan^2(α/2)]

  cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

  tanα=2tan(α/2)/[1-tan2(α/2)]

  三倍角公式

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin^3(α)

  cos3α=4cos^3(α)-3cosα

  tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

  和差化積公式

  三角函數(shù)的和差化積公式

  sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

  積化和差公式

  三角函數(shù)的積化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

小編推薦:

反三角函數(shù)

2013北京西城14中高三(上)期中診斷數(shù)學(xué)理試題及答案解析

  愛智康高中教育頻道為介紹的三角函數(shù)的誘導(dǎo)公式到這里就結(jié)束啦,更多有關(guān)三角函數(shù)的知識,請直接撥打免費咨詢電話:!

文章下長方圖-高三一輪復(fù)習(xí)史地政資料
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對1