資訊

上海

課程咨詢: 400-810-2680

預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當(dāng)前位置:北京學(xué)而思1對1 > 高中教育 > 高中數(shù)學(xué) > 正文
內(nèi)容頁banner-1對1體驗

2019北京高一期中考試數(shù)學(xué)?贾R回顧

2019-03-24 21:26:18  來源:網(wǎng)絡(luò)整理

  2019北京高一期中診斷數(shù)學(xué)?贾R回顧!月考結(jié)束,大家有適當(dāng)?shù)淖隹偨Y(jié)嗎?高一養(yǎng)成好的學(xué)習(xí)習(xí)慣是很重要的,高一的數(shù)學(xué)是很簡單的,愛智康助力期中考,下面是小編給大家整理的2019北京高一期中診斷數(shù)學(xué)?贾R回顧!同學(xué)們,加油!

 

 

想要了解2019年高一期中診斷試題的相關(guān)資料,請點擊加入【愛智康高中交流福利群】愛智康高中交流福利群 ,并直接向管理員“小康康”索。壑强蹈咧薪涣鞲@簳欢ㄆ诿赓M發(fā)放學(xué)習(xí)資料,高中以及高考政策等相關(guān)消息,請持題目,續(xù)關(guān)注!

 

 

  2019北京高一期中診斷數(shù)學(xué)?贾R回顧(一)


  1.過兩點有且只有一條直線


  2.兩點之間線段較短


  3.同角或等角的補(bǔ)角相等


  4.同角或等角的余角相等


  5.過一點有且只有一條直線和已知直線垂直


  6.直線外一點與直線上各點連接的所有線段中,垂線段較短


  7.平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行


  8.如果兩條直線都和第三條直線平行,這兩條直線也互相平行


  9.同位角相等,兩直線平行


  10.內(nèi)錯角相等,兩直線平行


  11.同旁內(nèi)角互補(bǔ),兩直線平行


  12.兩直線平行,同位角相等


  13.兩直線平行,內(nèi)錯角相等


  14.兩直線平行,同旁內(nèi)角互補(bǔ)


  15.定理 三角形兩邊的和大于第三邊


  16.推論 三角形兩邊的差小于第三邊


  17.三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°


  18.推論1 直角三角形的兩個銳角互余


  19.推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和


  20.推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角


  21.全等三角形的對應(yīng)邊、對應(yīng)角相等


  2019北京高一期中診斷數(shù)學(xué)常考知識回顧(二)


  1. 對于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。


  中元素各表示什么?


  注重借助于數(shù)軸和文氏圖解集合問題。


  空集是一切集合的子集,是一切非空集合的真子集。


  3. 注意下列性質(zhì):


  (3)德摩根定律:


  4. 你會用補(bǔ)集思想解決問題嗎?(排除法、間接法)


  的取值范圍。


  6. 命題的四種形式及其相互關(guān)系是什么?


  (互為逆否關(guān)系的命題是等價命題。)


  原命題與逆否命題同真、同假;逆命題與否命題同真同假。


  7. 對映射的概念了解嗎?映射f:A→B,是否注意到A中元素的任意性和B中與之對應(yīng)元素的先進(jìn)性,哪幾種對應(yīng)能構(gòu)成映射?


  (一對一,多對一,允許B中有元素?zé)o原象。)


  8. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?


  (定義域、對應(yīng)法則、值域)


  9. 求函數(shù)的定義域有哪些常見類型?


  10. 如何求復(fù)合函數(shù)的定義域?


  義域是_____________。


  11. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?


  12. 反函數(shù)存在的條件是什么?


  (一一對應(yīng)函數(shù))


  求反函數(shù)的步驟掌握了嗎?


  (①反解x;②互換x、y;③注明定義域)


  13. 反函數(shù)的性質(zhì)有哪些?


 、倩榉春瘮(shù)的圖象關(guān)于直線y=x對稱;


  ②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;


  14. 如何用定義證明函數(shù)的單調(diào)性?


  (取值、作差、判正負(fù))


  如何判斷復(fù)合函數(shù)的單調(diào)性?


  ∴……)


  15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?


  值是( )


  A. 0 B. 1 C. 2 D. 3


  ∴a的較大值為3)


  16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?


  (f(x)定義域關(guān)于原點對稱)


  注意如下結(jié)論:


  (1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。


  17. 你熟悉周期函數(shù)的定義嗎?


  函數(shù),T是一個周期。)


  如:


  18. 你掌握常用的圖象變換了嗎?


  注意如下“翻折”變換:


  19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?


  的雙曲線。


  應(yīng)用:①“三個二次”(二次函數(shù)、二次方程、二次不等式)的關(guān)系——二次方程


 、谇箝]區(qū)間[m,n]上的較值。


 、矍髤^(qū)間定(動),對稱軸動(定)的較值問題。


 、芤辉畏匠谈姆植紗栴}。


  由圖象記性質(zhì)! (注意底數(shù)的限定!)


  利用它的單調(diào)性求較值與利用均值不等式求較值的區(qū)別是什么?


  20. 你在基本運(yùn)算上常出現(xiàn)錯誤嗎?


  21. 如何解抽象函數(shù)問題?


  (賦值法、結(jié)構(gòu)變換法)


  22. 掌握求函數(shù)值域的常用方法了嗎?


  (二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)


  如求下列函數(shù)的較值:


  23. 你記得弧度的定義嗎?能寫出圓心角為α,半徑為R的弧長公式和扇形面積公式嗎?


  24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義


  25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?


  (x,y)作圖象。


  2019北京高一期中診斷數(shù)學(xué)常考知識回顧(三)


  1、含n個元素的有限集合其子集共有2n個,非空子集有2n—1個,非空真子集有2n—2個。


  2、集合中,Cu(A∩B)=(CuA)U(CuB),交之補(bǔ)等于補(bǔ)之并。Cu(AUB)=(CuA)∩(CuB),并之補(bǔ)等于補(bǔ)之交。


  3、ax2+bx+c<0的解集為x(0 +c>0的解集為x,cx2+bx+a>0的解集為>x或x<;ax2—bx+


  4、c<0的解集為x,cx2—bx+a>0的解集為->x或x<-。


  5、原命題與其逆否命題是等價命題。原命題的逆命題與原命題的否命題也是等價命題。


  6、函數(shù)是一種特殊的映射,函數(shù)與映射都可用:f:A→B表示。A表示原像,B表示像。當(dāng)f:A→B表示函數(shù)時,A表示定義域,B大于或等于其值域范圍。只有一一映射的函數(shù)才具有反函數(shù)。


  7、原函數(shù)與反函數(shù)的單調(diào)性一致,且都為奇函數(shù)。偶函數(shù)和周期函數(shù)沒有反函數(shù)。若f(x)與g(x)關(guān)于點(a,b)對稱,則g(x)=2b-f(2a-x).


  8、若f(-x)=f(x),則f(x)為偶函數(shù),若f(-x)=f(x),則f(x)為奇函數(shù);偶函數(shù)關(guān)于y軸對稱,且對稱軸兩邊的單調(diào)性相反;奇函數(shù)關(guān)于原點對稱,且在整個定義域上的單調(diào)性一致。反之亦然。若奇函數(shù)在x=0處有意義,則f(0)=0。函數(shù)的單調(diào)性可用定義法和導(dǎo)數(shù)法求出。偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù),奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù)。對于任意常數(shù)T(T≠0),在定義域范圍內(nèi),都有f(x+T)=f(x),則稱f(x)是周期為T的周期函數(shù),且f(x+kT)=f(x),k≠0.


  9、周期函數(shù)的特征性:①f(x+a)=-f(x),是T=2a的函數(shù),②若f(x+a)+f(x+b)=0,即f(x+a)=-f(x+b),T=2(b-a)的函數(shù),③若f(x)既x=a關(guān)對稱,又關(guān)于x=b對稱,則f(x)是T=2(b-a)的函數(shù)④若f(x+a)?f(x+b)=±1,即f(x+a)=±,則f(x)是T=2(b-a)的函數(shù)⑤f(x+a)=±,則f(x) 是T=4(b-a)的函數(shù)


  10、復(fù)合函數(shù)的單調(diào)性滿足“同增異減”原理。定義域都是指函數(shù)中自變量的取值范圍。


  11、抽象函數(shù)主要有f(xy)=f(x)+f(y)(對數(shù)型),f(x+y)=f(x)?f(y)(指數(shù)型),f(x+y)=f(x)+f(y)(直線型)。解此類抽象函數(shù)比較實用的方法是特殊值法和周期法。


  12、指數(shù)函數(shù)圖像的規(guī)律是:底數(shù)按逆時針增大。對數(shù)函數(shù)與之相反.


  13、ar?as=ar+s,ar÷as=ar—s,(ar)s=ars,(ab)r=arbr。在解可化為a2x+Bax+C=0或a2x+Bax+C≥0(≤0)的指數(shù)方程或不等式時,常借助于換元法,應(yīng)特別注意換元后新變元的取值范圍。


  14、log10N=lgN;logeN=lnN(e=2.718???);對數(shù)的性質(zhì):如果a>0,a≠0,M>0N>0,


  那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.


  換底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.


  15、函數(shù)圖像的變換:


  (1)水平平移:y=f(x±a)(a>0)的圖像可由y=f(x)向左或向右平移a個單位得到;


  (2)豎直平移:y=f(x)±b(b>0)圖像,可由y=f(x)向上或向下平移b個單位得到;


  (3)對稱:若對于定義域內(nèi)的一切x均有f(x+m)=f(x—m),則y=f(x)的圖像關(guān)于直線x=m對稱;y=f(x)關(guān)于(a,b)對稱的函數(shù)為y!=2b—f(2a—x).


  (4) ,學(xué)習(xí)計劃;翻折:①y=|f(x)|是將y=f(x)位于x軸下方的部分以x軸為對稱軸將期翻折到x軸上方的圖像。②y=f(|x|)是將y=f(x)位于y軸左方的圖像翻折到y(tǒng)軸的右方而成的圖像。


  (5)有關(guān)結(jié)論:①若f(a+x)=f(b—x),在x為一切實數(shù)上成立,則y=f(x)的圖像關(guān)于 x=對稱。②函數(shù)y=f(a+x)與函數(shù)y=f(b—x)的圖像有關(guān)于直線x=對稱。


  15、等差數(shù)列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+


  16、若n+m=p+q,則am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d為公差的等差數(shù)列。an是等差數(shù)列,若ap=q,aq=p,則ap+q=0;若sp=q,sq=p,則sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差數(shù)列,則可設(shè)前n項和為sn=an2+bn(注:沒有常數(shù)項),用方程的思想求解a,b。在等差數(shù)列中,若將其腳碼成等差數(shù)列的項取出組成數(shù)列,則新的數(shù)列仍舊是等差數(shù)列。


  17、等比數(shù)列中,an=a1?qn-1=am?qn-m,若n+m=p+q,則am?an=ap?aq;sn=na1(q=1), sn=,(q≠1);若q≠1,則有=q,若q≠—1,=q;sk,s2k—k,s3k—2k也是等比數(shù)列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比數(shù)列。在等比數(shù)列中,若將其腳碼成等差數(shù)列的項取出組成數(shù)列,則新的數(shù)列仍舊是等比數(shù)列。裂項公式:   =—,=?(—),常用數(shù)列遞推形式:疊加,疊乘,


  18、弧長公式:l=|α|?r。s扇=?lr=?|α|r2=?;當(dāng)一個扇形的周長一定時(為L時),


  其面積為,其圓心角為2弧度。


  19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;


  Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ

 

 

 

 

 相關(guān)推薦:2019北京高一期中診斷常考知識點【匯總】  

       2019年北京市各區(qū)高一下學(xué)期期中試題及答案大匯總

       2019北京高一期中診斷準(zhǔn)備背誦知識【匯總】

 

 

 

  愛智康高中教育頻道為大家分享的2019北京高一期中診斷數(shù)學(xué)?贾R回顧到這里就結(jié)束啦,有關(guān)北京一期中考前輔導(dǎo)及考后規(guī)劃的課程,請直接撥打免費咨詢電話:!2019年高考距離大家越來越近,同學(xué)們一定要把握現(xiàn)在,有困難克服一下,拿個好成績。

文章下長方圖-高三一輪復(fù)習(xí)史地政資料
立即領(lǐng)取中小學(xué)熱門學(xué)習(xí)資料
*我們在24小時內(nèi)與您取得電話聯(lián)系
側(cè)邊圖-寒假1對1