掃描注冊(cè)有禮
讓進(jìn)步看得見(jiàn)
熱門課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
點(diǎn)擊領(lǐng)取→高中人教版全套電子教材+全科知識(shí)點(diǎn)匯總
高一人教版必修一數(shù)學(xué)知識(shí)點(diǎn)!北京高中生莫錯(cuò)過(guò)!相信大家都了解,不去耕耘播種,再肥的沃土也長(zhǎng)不出莊稼,不去奮斗創(chuàng)造,再美的青春也結(jié)不出碩果。小編在這里給大家加油!希望同學(xué)們不要讓追求之舟停泊在幻想的港灣,而應(yīng)揚(yáng)起奮斗的風(fēng)帆,駛向現(xiàn)實(shí)生活的大海。下面一起來(lái)看看高一人教版必修一數(shù)學(xué)知識(shí)點(diǎn)!
【一】
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性,
(2)元素的互異性,
(3)元素的無(wú)序性,
3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實(shí)數(shù)集R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{xR|x-3>2},{x|x-3>2}
3)語(yǔ)言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個(gè)元素的集合
(2)無(wú)限集含有無(wú)限個(gè)元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)
實(shí)例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個(gè)集合是它本身的子集。AA
②真子集:如果AB,且AB那就說(shuō)集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄B,BC,那么AC
④如果AB同時(shí)BA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
三、集合的運(yùn)算
運(yùn)算類型交集并集補(bǔ)集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)
例題:
1.下列四組對(duì)象,能構(gòu)成集合的是()
A某班所有高個(gè)子的孩子B的藝術(shù)家C一切很大的書(shū)D倒數(shù)等于它自身的實(shí)數(shù)
2.集合{a,b,c}的真子集共有個(gè)
3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是.
4.設(shè)集合A=,B=,若AB,則的取值范圍是
5.50名孩子做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人,
兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有人。
6.用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M=.
7.已知集合A={x|x2+2x-8=0},B={x|x2-5x+6=0},C={x|x2-mx+m2-19=0},若B∩C≠Φ,A∩C=Φ,求m的值
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開(kāi)方數(shù)不小于零;
(3)對(duì)數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義.
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致(兩點(diǎn)必須同時(shí)具備)
(見(jiàn)課本21頁(yè)相關(guān)例2)
2.值域:先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3.函數(shù)圖象知識(shí)歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(x),(x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù)y=f(x),(x∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上.
(2)畫(huà)法
A、描點(diǎn)法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對(duì)稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開(kāi)區(qū)間、閉區(qū)間、半開(kāi)半閉區(qū)間
(2)無(wú)窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作f:A→B
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1
如果對(duì)于區(qū)間D上的任意兩個(gè)自變量的值x1,x2,當(dāng)x1f(x2),那么就說(shuō)f(x)在這個(gè)區(qū)間上是減函數(shù).區(qū)間D稱為y=f(x)的單調(diào)減區(qū)間.
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2)圖象的特點(diǎn)
如果函數(shù)y=f(x)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說(shuō)函數(shù)y=f(x)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(A)定義法:
○1任取x1,x2∈D,且x1
○2作差f(x1)-f(x2);
○3變形(通常是因式分解和配方);
○4定號(hào)(即判斷差f(x1)-f(x2)的正負(fù));
○5下結(jié)論(指出函數(shù)f(x)在給定的區(qū)間D上的單調(diào)性).
(B)圖象法(從圖象上看升降)
(C)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(x)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(x),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫(xiě)成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
○2確定f(-x)與f(x)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數(shù);若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數(shù).
(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來(lái)判定;
(3)利用定理,或借助函數(shù)的圖象判定.
9、函數(shù)的解析表達(dá)式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1)湊配法
2)待定系數(shù)法
3)換元法
4)消參法
10.函數(shù)(小)值(定義見(jiàn)課本p36頁(yè))
○1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值
○2利用圖象求函數(shù)的(小)值
○3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有較小值f(b);
例題:
1.求下列函數(shù)的定義域:
、泞
2.設(shè)函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)開(kāi)_
3.若函數(shù)的定義域?yàn),則函數(shù)的定義域是
4.函數(shù),若,則=
6.已知函數(shù),求函數(shù),的解析式
7.已知函數(shù)滿足,則=。
8.設(shè)是R上的奇函數(shù),且當(dāng)時(shí),,則當(dāng)時(shí)=
在R上的解析式為
9.求下列函數(shù)的單調(diào)區(qū)間:
⑴(2)
10.判斷函數(shù)的單調(diào)性并證明你的結(jié)論.
11.設(shè)函數(shù)判斷它的奇偶性并且求證
【二】
1、函數(shù)零點(diǎn)的定義
(1)對(duì)于函數(shù))(xfy,我們把方程0)(xf的實(shí)數(shù)根叫做函數(shù))(xfy的零點(diǎn)。
(2)方程0)(xf有實(shí)根Û函數(shù)()yfx的圖像與x軸有交點(diǎn)Û函數(shù)()yfx有零點(diǎn)。因此判斷一個(gè)函數(shù)是否有零點(diǎn),有幾個(gè)零點(diǎn),就是判斷方程0)(xf是否有實(shí)數(shù)根,有幾個(gè)實(shí)數(shù)根。函數(shù)零點(diǎn)的求法:解方程0)(xf,所得實(shí)數(shù)根就是()fx的零點(diǎn)(3)變號(hào)零點(diǎn)與不變號(hào)零點(diǎn)
①若函數(shù)()fx在零點(diǎn)0x左右兩側(cè)的函數(shù)值異號(hào),則稱該零點(diǎn)為函數(shù)()fx的變號(hào)零點(diǎn)。②若函數(shù)()fx在零點(diǎn)0x左右兩側(cè)的函數(shù)值同號(hào),則稱該零點(diǎn)為函數(shù)()fx的不變號(hào)零點(diǎn)。
、廴艉瘮(shù)()fx在區(qū)間,ab上的圖像是一條連續(xù)的曲線,則0)()(
2、函數(shù)零點(diǎn)的判定
(1)零點(diǎn)存在性定理:如果函數(shù))(xfy在區(qū)間],[ba上的圖象是連續(xù)不斷的曲線,并且有()()0fafb,那么,函數(shù))(xfy在區(qū)間,ab內(nèi)有零點(diǎn),即存在),(0bax,使得0)(0xf,這個(gè)0x也就是方程0)(xf的根。
(2)函數(shù))(xfy零點(diǎn)個(gè)數(shù)(或方程0)(xf實(shí)數(shù)根的個(gè)數(shù))確定方法
①代數(shù)法:函數(shù))(xfy的零點(diǎn)Û0)(xf的根;②(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù))(xfy的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn)。
(3)零點(diǎn)個(gè)數(shù)確定
0)(xfy有2個(gè)零點(diǎn)Û0)(xf有兩個(gè)不等實(shí)根;0)(xfy有1個(gè)零點(diǎn)Û0)(xf有兩個(gè)相等實(shí)根;0)(xfy無(wú)零點(diǎn)Û0)(xf無(wú)實(shí)根;對(duì)于二次函數(shù)在區(qū)間,ab上的零點(diǎn)個(gè)數(shù),要結(jié)合圖像進(jìn)行確定.
3、二分法
(1)二分法的定義:對(duì)于在區(qū)間[,]ab上連續(xù)不斷且()()0fafb的函數(shù)()yfx,通過(guò)不斷地把函數(shù)()yfx的零點(diǎn)所在的區(qū)間一分為二,使區(qū)間的兩個(gè)端點(diǎn)逐步逼近零點(diǎn),進(jìn)而得到零點(diǎn)的近似值的方法叫做二分法;
(2)用二分法求方程的近似解的步驟:
、俅_定區(qū)間[,]ab,驗(yàn)證()()0fafb,給定準(zhǔn)確度e;
、谇髤^(qū)間(,)ab的中點(diǎn)c;③()fc;
(ⅰ)若()0fc,則c就是函數(shù)的零點(diǎn);
(ⅱ)若()()0fafc,則令bc(此時(shí)零點(diǎn)0(,)xac);(ⅲ)若()()0fcfb,則令ac(此時(shí)零點(diǎn)0(,)xcb);
④判斷是否達(dá)到準(zhǔn)確度e,即ab,則得到零點(diǎn)近似值為a(或b);否則重復(fù)②至④步.
另外學(xué)而思愛(ài)智康的老師還為大家精心準(zhǔn)備了:
高中人教版全套電子教材+全科知識(shí)點(diǎn)匯總
點(diǎn)擊鏈接?https://jinshuju.net/f/UrgEjV或下方圖片即可領(lǐng)。
同時(shí),也向您推薦高中學(xué)業(yè)規(guī)劃課程、高考志愿填報(bào)課程
點(diǎn)擊鏈接?https://jinshuju.net/f/HXIXwC或下方圖片即可預(yù)約!
以上就是小編特意為大家整理的高一人教版必修一數(shù)學(xué)知識(shí)點(diǎn)!北京高中生莫錯(cuò)過(guò)!的相關(guān)內(nèi)容,同學(xué)們?cè)趯W(xué)習(xí)的過(guò)程中如有疑問(wèn)或者想要獲取更多資料,歡迎撥打?qū)W而思愛(ài)智康免費(fèi)電話: 更有專業(yè)的老師為大家解答相關(guān)問(wèn)題!
小編推薦:
文章來(lái)源于網(wǎng)絡(luò)整理,如有侵權(quán),請(qǐng)聯(lián)系刪除,郵箱fanpeipei@100tal.com
大家都在看