掃描注冊(cè)有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對(duì)1精品課程(面授/在線),滿足學(xué)員個(gè)性化學(xué)習(xí)需求 馬上報(bào)名↓
請(qǐng)選擇城市
請(qǐng)選擇意向校區(qū)
請(qǐng)選擇年級(jí)
請(qǐng)選擇科目
小學(xué)數(shù)學(xué)常用解題思路之類比思路
類比就是從一個(gè)問題想到了相似的另一個(gè)問題。例如從等差數(shù)列求和公式想到梯形面積公式,從矩形面積公式想到長(zhǎng)方體體積公式等等;類比是一個(gè)重要的思想方法,也是解題的一種重要思路。
例1有一個(gè)掛鐘,每小時(shí)敲一次鐘,幾點(diǎn)鐘就敲幾下,鐘敲6下,5秒鐘敲完;鐘敲12下,幾秒敲完?
分析(用類比思路探討):
有人會(huì)盲目地由倍數(shù)關(guān)系下結(jié)淪,誤認(rèn)為10秒鐘敲完,那就完全錯(cuò)了。其實(shí)此題只要運(yùn)用類比思路,與植樹問題聯(lián)系起來想一想就通了:一條線路植樹分成幾段(株距),如果不包括兩個(gè)端點(diǎn),共需植(n-1)棵樹,如果包括兩個(gè)端點(diǎn),共需植樹(n+1)棵,把鐘點(diǎn)指數(shù)看作是一棵棵的樹,把敲的時(shí)間看作棵距,此題就迎刃而解了。
例2從時(shí)針指向4點(diǎn)開始,再經(jīng)過多少分鐘,時(shí)針正好與分鐘重合。
分析(用類比思路討論):
本題可以與行程問題進(jìn)行類比。如圖2。11,如果用時(shí)針1小時(shí)所走的一格作為路程單位,那么本題可以重新敘述為:已知分針與時(shí)針相距4格,分
如果分針與時(shí)針同時(shí)同向出發(fā),問:分針過多少分鐘可追上時(shí)針?這樣就與行程問題中的追及問題相似了。4為距離差,速度差為,重合的時(shí)間,就是追上的時(shí)間。
大家都在看