資訊

上海

課程咨詢: 400-810-2680

預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓

獲取驗證碼

請選擇城市

  • 上海

請選擇意向校區(qū)

請選擇年級

請選擇科目

立即體驗
當前位置:北京學而思1對1 > 高中教育 > 高中數學 > 正文
內容頁banner-1對1體驗

高一人教版數學必修四第一章知識點梳理!北京學子快來看!

2020-03-19 18:13:33  來源:網絡整理

    點擊領取→高中人教版全套電子教材+全科知識點匯總

高一人教版數學必修四先進章知識點梳理!北京學子快來看!同學們,高中學習是一個系統(tǒng)的過程,對于高中內容來說,預習、聽課、復習、功課、筆記等等都是必不可少的環(huán)節(jié),因此同學們一定要加油哦~~下面一起來看看高一人教版數學必修四先進章知識點梳理!

  兩角和公式

  sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

 

  倍角公式

  tan2A = 2tanA/(1-tan^2 A)

  Sin2A=2SinA•CosA

  Cos2A = Cos^2 A--Sin^2 A

  =2Cos^2 A-1

  =1-2sin^2 A

 

  三倍角公式

  sin3A = 3sinA-4(sinA)^3;

  cos3A = 4(cosA)^3 -3cosA

  tan3a = tan a • tan(π/3+a)• tan(π/3-a)

 

  半角公式

  sin(A/2) = √{(1--cosA)/2}

  cos(A/2) = √{(1+cosA)/2}

  tan(A/2) = √{(1--cosA)/(1+cosA)}

  cot(A/2) = √{(1+cosA)/(1-cosA)}

  tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

 

  和差化積

  sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

  sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

  cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

  cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

  tanA+tanB=sin(A+B)/cosAcosB

 

  積化和差

  sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

  cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

  sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

  cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

 

  誘導公式

  sin(-a) = -sin(a)

  cos(-a) = cos(a)

  sin(π/2-a) = cos(a)

  cos(π/2-a) = sin(a)

  sin(π/2+a) = cos(a)

  cos(π/2+a) = -sin(a)

  sin(π-a) = sin(a)

  cos(π-a) = -cos(a)

  sin(π+a) = -sin(a)

  cos(π+a) = -cos(a)

  tgA=tanA = sinA/cosA

 

  公式一:

  設α為任意角,終邊相同的角的同一三角函數的值相等:

  sin(2kπ+α)= sinα

  cos(2kπ+α)= cosα

  tan(2kπ+α)= tanα

  cot(2kπ+α)= cotα

 

  公式二:

  設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:

  sin(π+α)= -sinα

  cos(π+α)= -cosα

  tan(π+α)= tanα

  cot(π+α)= cotα

 

  公式三:

  任意角α與 -α的三角函數值之間的關系:

  sin(-α)= -sinα

  cos(-α)= cosα

  tan(-α)= -tanα

  cot(-α)= -cotα

 

  公式四:

  利用公式二和公式三可以得到π-α與α的三角函數值之間的關系:

  sin(π-α)= sinα

  cos(π-α)= -cosα

  tan(π-α)= -tanα

  cot(π-α)= -cotα

 

  公式五:

  利用公式-和公式三可以得到2π-α與α的三角函數值之間的關系:

  sin(2π-α)= -sinα

  cos(2π-α)= cosα

  tan(2π-α)= -tanα

  cot(2π-α)= -cotα

 

  公式六:

  π/2±α及3π/2±α與α的三角函數值之間的關系:

  sin(π/2+α)= cosα

  cos(π/2+α)= -sinα

  tan(π/2+α)= -cotα

  cot(π/2+α)= -tanα

  sin(π/2-α)= cosα

  cos(π/2-α)= sinα

  tan(π/2-α)= cotα

  cot(π/2-α)= tanα

  sin(3π/2+α)= -cosα

  cos(3π/2+α)= sinα

  tan(3π/2+α)= -cotα

  cot(3π/2+α)= -tanα

  sin(3π/2-α)= -cosα

  cos(3π/2-α)= -sinα

  tan(3π/2-α)= cotα

  cot(3π/2-α)= tanα

  (以上k∈Z)

 

  以上就是小編為大家整理的高中人教版數學必修四三角函數知識點,希望對大家有所幫助! 

 

  另外學而思愛智康的老師還為大家精心準備了:

  高中人教版全套電子教材+全科知識點匯總

點擊鏈接?https://jinshuju.net/f/p4vjuF或下方圖片即可領!

 

同時,也向您推薦高中學業(yè)規(guī)劃課程、高考志愿填報課程

點擊鏈接?https://jinshuju.net/f/HXIXwC或下方圖片即可預約!

 

以上就是小編特意為大家整理的高一人教版數學必修四先進章知識點梳理!北京學子快來看!的相關內容,同學們在學習的過程中如有疑問或者想要獲取更多資料,歡迎撥打學而思愛智康免費電話: 更有專業(yè)的老師為大家解答相關問題!

 

小編推薦:

  北京疫情期間的高三孩子如何準備?

2020北京西城區(qū)高三一模各科試題及答案解析匯總

文章來源于網絡整理,如有侵權,請聯系刪除,郵箱fanpeipei@100tal.com

文章下長方圖-高三一輪復習史地政資料
立即領取中小學熱門學習資料
*我們在24小時內與您取得電話聯系
側邊圖-寒假1對1