預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
點擊領(lǐng)取>>>2014-2019北京中考真題、北京各區(qū)一模、二模試題及答案解析匯總
北京2017數(shù)學中功課。同學們在診斷的時候有沒有過這種情況,相當一部分丟分不是丟在難題上,而是基礎(chǔ)題丟分太多,導致較后的診斷分數(shù)不理想。所以,在后期復習過程中,盡量回歸基礎(chǔ),每天保證做一定量的基礎(chǔ)題,讓自己把這一部分基礎(chǔ)題做對、做全,爭取拿優(yōu)異。小編為大家?guī)?/span>北京2017數(shù)學中功課的相關(guān)內(nèi)容,供大家參考。
北京2017數(shù)學中功課
點擊了解>>>學而思愛智康中考沖刺精品課程 咨詢課程請撥打:
初中數(shù)學9個經(jīng)典解題法!
1、配方法
通過把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式解決數(shù)學問題的方法,叫配方法。
配方法用的較多的是配成完全平方式,它是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式,是恒等變形的基礎(chǔ),它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。
因式分解的方法,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
北京2017數(shù)學中功課換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。
通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式&韋達定理
一元二次方程ax²+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b²-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應用。
5、待定系數(shù)法
在解數(shù)學問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,較后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。
它是中學數(shù)學中常用的方法之一。
6、構(gòu)造法
在北京2017數(shù)學中功課解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構(gòu)造法。
運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。
7、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積有關(guān)的性質(zhì)定理,不僅可用于面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達到求證的結(jié)果。
所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
8、幾何變換法
在數(shù)學問題的研究中,常常運用變換法,把復雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。
所謂變換是一個集合的任一元素到同一集合的元素的一個一一映射。中學數(shù)學中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的題目,可以借助幾何變換法,化繁為簡,化難為易。
另一方面,也可將變換的觀點滲透到中學數(shù)學教學中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認識。
幾何變換包括:
(1)平移;(2)旋轉(zhuǎn);(3)對稱。
9、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導致矛盾,從而否定相反的假設(shè),達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;先進/至少有兩個。
歸謬是反證法的關(guān)鍵,導出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
獲取完整版方法:
1.點擊鏈接:https://jinshuju.net/f/1Ki3F0 領(lǐng)取2014-2019北京中考真題、北京各區(qū)一模、二模試題及答案解析匯總,填寫姓名、電話信息后即可跳轉(zhuǎn)百度云盤地址,免費獲取。
這一期的北京2017數(shù)學中功課小編就介紹到這里,“書山有路勤為徑,學海無涯苦作舟”,學習沒有捷徑可走,唯有“勤奮”。想了解相關(guān)課程的同學,請撥打?qū)W而思愛智康免費咨詢電話:
小編推薦:2015北京英語中功課
小編推薦:17北京理數(shù)壓軸題評分標準