預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
點擊領(lǐng)取→期末必刷沖刺復題目:北京初一/二/三上學期期末試題及答案解析(持續(xù)更新中,建議收藏)
北京期末初中三角函數(shù)!華羅庚告訴我們,把一本書真正學懂,并且達到深透的要求需要經(jīng)過“由薄到厚”和“由厚到薄”的兩個過程。“由薄到厚”是學習、接受的過程;“由厚到薄”是消化、提煉的過程。下面,小編為大家?guī)?span style="color:#f00;">北京期末初中三角函數(shù)。
銳角三角函數(shù)公式
兩角和差公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan² A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin² A =2Cos² A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)³;
cos3A = 4(cosA)³ -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
點擊了解>>>終于等到你!學而思8人班期末真題刷題班,針對性訓練更快,趕快點擊鏈接了解吧~&咨詢課程請撥打:
半角公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
積化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化積公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
通用公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
獨立思考較好是在老師指導下進行。耐心跟著老師走,可以很快地前進,但也不要依賴老師,主要是靠自己的努力。想了解相關(guān)課程的同學,請撥打?qū)W而思愛智康免費咨詢電話:!
北京期末初中三角函數(shù)就給大家分享到這里,另外學而思學科老師還給大家整理了一份《初一期末試題資料合集》。
點擊領(lǐng)取:《期末必刷沖刺復題目:北京初一/二/三上學期期末試題及答案解析(持續(xù)更新中,建議收藏)》
查缺補漏,助你備戰(zhàn)期末!
部分資料截圖如下:
點擊鏈接領(lǐng)取完整版資料:https://jinshuju.net/f/Ggc9gd
同時也向您的孩子推薦終于等到你!學而思8人班期末真題刷題班,針對性訓練更快,趕快點擊鏈接了解吧~,點擊鏈接:https://editor.izhikang.com/#/preview?&uid=b576b4e7a0615e6a57f19b4a7a388b2e&entrySource=40fa31849d511d84ad1c6f56c9bf4bcf&extendionSource=QT001 或者下方圖片即可預約
相關(guān)推薦: