掃描注冊有禮
讓進(jìn)步看得見
熱門課程先知道
預(yù)約高中1對1精品課程(面授/在線),滿足學(xué)員個性化學(xué)習(xí)需求 馬上報名↓
三角函數(shù)公式大全!把角度θ作為自變量,在直角坐標(biāo)系里畫個半徑為1的圓(單位圓),然后角的一邊與X軸重合,頂點(diǎn)放在圓心,另一邊作為一個射線,肯定與單位圓相交于一點(diǎn)。這點(diǎn)的坐標(biāo)為(x,y)。下面為大家分享三角函數(shù)公式大全!希望能幫到大家!
兩角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinACosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A—1 =1—2sin^2 A
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化積
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
積化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
小編推薦:
愛智康高中教育頻道分享的三角函數(shù)公式大全到這里就結(jié)束啦,有關(guān)高中數(shù)學(xué)輔導(dǎo)的課程,請直接撥打免費(fèi)咨詢電話:!學(xué)習(xí)靠的是日積月累,絕不可以眼高手低。只要大家學(xué)習(xí)認(rèn)真,堅持不懈就一定能學(xué)好。
大家都在看
限時免費(fèi)領(lǐng)取
學(xué)習(xí)相關(guān)