預約高中1對1精品課程(面授/在線),滿足學員個性化學習需求 馬上報名↓
2019年北京朝陽區(qū)高三一模復習數學知識點!較后的一個寒假你都干嘛了?過的是否充實呢?高中的時候,我很愛學習數學,學好數理化走遍天下都不怕,數學是其他理科的基礎,的較好方法就是多做題了,下面是2019年北京朝陽區(qū)高三一模復習數學知識點!同學們,加油�。�
想要了解2019年高考一模試題的相關資料,請點擊加入【愛智康高中交流福利群】 ,并直接向管理員“小康康”索�。壑强蹈咧薪涣鞲@簳欢ㄆ诿赓M發(fā)放學習資料,高中以及高考政策等相關消息,請持題目,續(xù)關注!
2019年北京朝陽區(qū)高三一模復習數學知識點(一)
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中并沒有規(guī)定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.
(5)次序對于數列來講是十分重要的,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區(qū)別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數列的分類
(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.
(2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.
3.數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規(guī)律,這個規(guī)律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是先進的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非先進.如:數列1,2,3,4,…,
由公式寫出的后續(xù)項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規(guī)律,多觀察分析,真正找到數列的內在規(guī)律,由數列前幾項寫出其通項公式,沒有通用的方法可循.
再強調對于數列通項公式的理解注意以下幾點:
(1)數列的通項公式實際上是一個以正整數集N*或它的有限子集{1,2,…,n}為定義域的函數的表達式.
(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.
(3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式.
如2的不足近似值,準確到1,0.1,0.01,0.001,0.000 1,…所構成的數列1,1.4,1.41,1.414,1.414 2,…就沒有通項公式.
(4)有的數列的通項公式,形式上不一定是先進的,正如舉例中的:
(5)有些數列,只給出它的前幾項,并沒有給出它的構成規(guī)律,那么僅由前面幾項歸納出的數列通項公式并不先進.
4.數列的圖象
對于數列4,5,6,7,8,9,10每一項的序號與這一項有下面的對應關系:
序號:1 2 3 4 5 6 7
項: 4 5 6 7 8 9 10
這就是說,上面可以看成是一個序號集合到另一個數的集合的映射.因此,從映射、函數的觀點看,數列可以看作是一個定義域為正整集N*(或它的有限子集{1,2,3,…,n})的函數,當自變量從小到大依次取值時,對應的一列函數值.這里的函數是一種特殊的函數,它的自變量只能取正整數.
由于數列的項是函數值,序號是自變量,數列的通項公式也就是相應函數和解析式.
數列是一種特殊的函數,數列是可以用圖象直觀地表示的.
數列用圖象來表示,可以以序號為橫坐標,相應的項為縱坐標,描點畫圖來表示一個數列,在畫圖時,為方便起見,在平面直角坐標系兩條坐標軸上取的單位長度可以不同,從數列的圖象表示可以直觀地看出數列的變化情況,但不準確.
把數列與函數比較,數列是特殊的函數,特殊在定義域是正整數集或由以1為首的有限連續(xù)正整數組成的集合,其圖象是無限個或有限個孤立的點.
5.遞推數列
一堆鋼管,共堆放了七層,自上而下各層的鋼管數構成一個數列:4,5,6,7,8,9,10.①
數列①還可以用如下方法給出:自上而下先進層的鋼管數是4,以下每一層的鋼管數都比上層的鋼管數多1。
2019年北京朝陽區(qū)高三一模復習數學知識點(二)
注重對概念的理解
函數部分的一個鮮明特點是概念多,對概念理解的要求高。而在實際的復習中,孩子對此可能不是很重視,其實,概念能突出本質,產生解決問題的方法。對概念不重視,題目一定也做不好。
就高考而言,直接針對函數概念的功課也不少,例如05年上海春季高考數學卷的第16題就是考察孩子是否理解函數較大值的概念。在高中數學的代數證明問題中,函數問題是較多較突出的一個部分,如函數的單調性、奇偶性、周期性的證明等等,而用定義法判斷和證明這些性質往往是較直接有效的方法。上海卷連續(xù)兩年都考查了這方面的內容與方法,如06年文、理科的第22題,考查的是函數的單調性、值域與較值,07年的第19題,文科考察的是函數奇偶性的判斷與證明,理科在此基礎上還考察了函數單調性。
構建知識、方法與技能網
當問到孩子類似于函數主要有哪些內容?等問題時,孩子的回答大多是一些零散的數學名詞或局部的細節(jié),這說明孩子對知識還缺少整體把握。所以復習的首要任務是立足于教材,將高中所學的函數知識進行系統梳理,用簡明的圖表形式把基礎知識進行有機的串聯,以便于找出自己的缺漏,明確復習的重點,合理安排復習計劃。
就函數部分而言,大體分為三個層次的內容:
1、函數的概念與基本性質,主要有函數的概念與運算、單調性、奇偶性與對稱性、周期性、較值與值域、圖像等。
2、一些簡單函數的研究,主要是二次函數、冪、指、對函數等。
3、函數綜合與實際應用問題,如函數-方程-不等式的關系與應用,用函數思想解決的實際應用問題等。
當然,在這個過程中也發(fā)現,孩子梳理知識的過程過于被動、機械,只是將課本或是參考書中的內容抄在本子上,缺少了自己的認識與理解,將知識與方法割裂開來,整理的東西成了空中樓閣,自然沒什么用。這時,就需對每一個內容細化,問問自己復習這個內容時需要解決好哪些問題,以此為載體來提煉與總結基本方法。
以函數的單調性為例,可以從哪些問題入手復習呢?問題一:什么是函數的單調性?可以借助一些概念的辨析題來幫助理解。問題二:如何判斷和證明一個函數在某個區(qū)間上的單調性?對這個問題的解決,需要的知識基礎有:理解函數單調性的概念,熟知所學習過的各種基本函數(如一次函數、二次函數、反比例函數、冪、指、對函數等)的單調性,和函數(如y=x+ax(a0))以及簡單的復合函數單調性等。基本的方法主要是利用單調性的定義、以及不等式的性質進行判斷和證明。問題三:函數的單調性有哪些簡單應用?主要的應用是求函數的較值,此外還可能涉及到不等式、比較大小等問題。較后還可以進一步總結易錯、易漏點,如討論函數的單調性必須在其定義域內進行,兩個單調函數的積函數的單調性不確定等。
抓典型問題鞏固訓練
高三孩子在復習中大都愿意花大量時間做題,追求解題技巧,雖然這樣做有一定的作用,但題目做得太多太雜,未必有利于基本方法的落實。其實對于每一個知識點都有典型問題,抓住它們進行訓練,將同一知識,同一方法的問題集中在一起訓練,并努力使自己表達規(guī)范、正確,相信能達到更高效的復習效果。
還是以函數的單調性的判斷與證明為例,一般也就兩類典型問題。先進是正確判斷與證明某個函數的單調性,寫出單調區(qū)間,要注意函數的各種形式,如分式的(如y=x+32x+1),和函數(如y=x+(a0)),簡單的復合函數(如y=log2(x2-2x-3)),以及帶有根式和少有值的等等。第二是它的逆問題,知道函數在某個區(qū)間上的單調性如何求字母參數的取值范圍,如函數y=ax2+x+2在區(qū)間[5,10]上遞增,求實數a的取值范圍等。
另一方面,可以在同一個問題的背景下,自己做一些小小的變化與發(fā)展,從中做一些深入的探究。例如將函數y=log2(x2-2x-3)變化為y=loga(x2-2x-3)單調性會怎樣變化?如果變化為y=log2(ax2-2x-3)情況又如何?再復雜一些,如變化為y=loga(x2-2x-a)呢?反之,如果函數y=log2(ax2-2x-3)在區(qū)間(-,1)上單調遞減,a的取值范圍是什么?在此基礎上再想一想還能提出什么問題來研究呢?例如函數y=log2(ax2-2x-3)的值域為R,a的取值范圍是什么?函數y=log2(ax2-2x-3)是否可以有較大值,如果有,a的取值范圍是什么?對自己提出的問題加以解決,能使自己的復習更有針對性,真正掌握解題的規(guī)律和方法,并幫助自己跳出盲目的題海戰(zhàn)。
2019年北京朝陽區(qū)高三一模復習數學知識點(三)
1. 滿足二元一次不等式(組)的x和y的取值構成有序數對(x,y),稱為二元一次不等式(組)的一個解,所有這樣的有序數對(x,y)構成的集合稱為二元一次不等式(組)的解集。
2. 二元一次不等式(組)的每一個解(x,y)作為點的坐標對應平面上的一個點,二元一次不等式(組)的解集對應平面直角坐標系中的一個半平面(平面區(qū)域)。
3. 直線l:Ax+By+C=0(A、B不全為零)把坐標平面劃分成兩部分,其中一部分(半個平面)對應二元一次不等式Ax+By+C>0(或≥0),另一部分對應二元一次不等式Ax+By+C<0(或≤0)。
4. 已知平面區(qū)域,用不等式(組)表示它,其方法是:在所有直線外任取一點(如本題的原點(0,0)),將其坐標代入Ax+By+C,判斷正負就可以確定相應不等式。
5. 一個二元一次不等式表示的平面區(qū)域是相應直線劃分開的半個平面,一般用特殊點代入二元一次不等式檢驗就可以判定,當直線不過原點時常選原點檢驗,當直線過原點時,常選(1,0)或(0,1)代入檢驗,二元一次不等式組表示的平面區(qū)域是它的各個不等式所表示的平面區(qū)域的公共部分,注意邊界是實線還是虛線的含義。“線定界,點定域”。
6. 滿足二元一次不等式(組)的整數x和y的取值構成的有序數對(x,y),稱為這個二元一次不等式(組)的一個解。所有整數解對應的點稱為整點(也叫格點),它們都在這個二元一次不等式(組)表示的平面區(qū)域內。
7. 畫二元一次不等式Ax+By+C≥0所表示的平面區(qū)域時,應把邊界畫成實線,畫二元一次不等式Ax+By+C>0所表示的平面區(qū)域時,應把邊界畫成虛線。
8. 若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的同側,則Ax0+By0+C與Ax1+Byl+C符號相同;若點P(x0,y0)與點P1(x1,y1)在直線l:Ax+By+C=0的兩側,則Ax0+By0+C與Ax1+Byl+C符號相反。
9. 從實際問題中抽象出二元一次不等式(組)的步驟是:
(1)根據題意,設出變量;
(2)分析問題中的變量,并根據各個不等關系列出常量與變量x,y之間的不等式;
(3)把各個不等式連同變量x,y有意義的實際范圍合在一起,組成不等式組。
相關推薦:2019年北京海淀區(qū)高三一模復習知識點【匯總】
愛智康高中教育頻道為大家分享的2019年北京朝陽區(qū)高三一模復習數學知識點到這里就結束啦,有關北京高考一模考前輔導及考后規(guī)劃的課程,請直接撥打免費咨詢電話:!2019年高考距離大家越來越近,同學們一定要把握現在,有困難克服一下,拿個好成績。
限時免費領取